ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (22)
  • Oxford University Press  (22)
  • Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition  (15)
  • Chemistry and Pharmacology  (7)
Collection
  • Articles  (22)
  • 1
    Publication Date: 2015-10-23
    Description: It is unclear how or even if phosphorus (P) input alters the influence of nitrogen (N) deposition in a forest. In theory, nutrients in leaves and twigs differing in age may show different responses to elevated nutrient input. To test this possibility, we selected Chinese fir ( Cunninghamia lanceolata ) for a series of N and P addition experiments using treatments of +N1 – P (50 kg N ha –1 year –1 ), +N2 – P (100 kg N ha –1 year –1 ), –N + P (50 kg P ha –1 year –1 ), +N1 + P, +N2 + P and –N – P (without N and P addition). Soil samples were analyzed for mineral N and available P concentrations. Leaves and twigs in summer and their litters in winter were classified as and sorted into young and old components to measure N and P concentrations. Soil mineral N and available P increased with N and P additions, respectively. Nitrogen addition increased leaf and twig N concentrations in the second year, but not in the first year; P addition increased leaf and twig P concentrations in both years and enhanced young but not old leaf and twig N accumulations. Nitrogen and P resorption proficiencies in litters increased in response to N and P additions, but N and P resorption efficiencies were not significantly altered. Nitrogen resorption efficiency was generally higher in leaves than in twigs and in young vs old leaves and twigs. Phosphorus resorption efficiency showed a minimal variation from 26.6 to 47.0%. Therefore, P input intensified leaf and twig N enrichment with N addition, leaf and twig nutrients were both gradually resorbed with aging, and organ and age effects depended on the extent of nutrient limitation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-30
    Description: Human cytochrome P450 2A13 (CYP2A13), mainly expressed in respiratory tract, is active towards numerous toxicants. To establish the metabolism in vitro , we expressed CYP2A13 and NADPH-CYP450 oxidoreductase (POR) in a baculovirus/ sf9 system. Due to the deficiency of sf9 cells in heme incorporation, we investigated the effects of different heme precursors on the expression of CYP2A13, POR and their co-expression. The present results showed that both CYP2A13 and POR were presented the highest expression levels or activity with 0.2 mM -aminolaevulinic acid (5-ALA), 0.02 mM Fe 3+ and 0.5–1.0 μg/ml hemin. The combination of 0.2 mM 5-ALA and 0.02 mM Fe 3+ significantly improved CYP2A13 expression and content compared with heme precursors alone, so was POR activity. A multiplicity of infection (MOI) value of 5 pfu/cell for CYP2A13 baculovirus particles induced very high CYP2A13 expression. When co-infected with different POR MOI values, a viral ratio of 5 : 2 was associated with the highest CYP2A13 activity, whereas POR activity dose dependently increased with POR MOI. Furthermore, the expressed CYP2A13 in the optimized conduction could eliminate its substrate aflatoxin B1 at a significantly higher than those in other condition ( P 〈 0.01). Our results provide an efficient approach for expressing functionally characterized, highly active and homogeneous CYP2A13 proteins.
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-07
    Description: Assessing forest cover change is a key issue for any national forest inventory. This was tested in two study areas in Switzerland on the basis of stereo airborne digital sensor (ADS) images and advanced digital surface model (DSM) generation techniques based on image point clouds. In the present study, an adaptive multi-scale approach to detect forest cover change with high spatial and temporal resolution was applied to two study areas in Switzerland. The challenge of this approach is to minimize DSM height uncertainties that may affect the accuracy of the forest cover change results. The approach consisted of two steps. In the first step, a ‘change index’ parameter indicated the overall change status at a coarser scale. The tendency towards change was indicated by derivative analysis of the normalized histograms of the difference between the two canopy height models (DCHMs) in different years. In the second step, detection of forest cover change at a refined scale was based on an automatic threshold and a moving window technique. Promising results were obtained and reveal that real forest cover changes can be distinguished from non-changes with a high degree of accuracy in managed mixed forests. Results had a lower accuracy for forests located on steep alpine terrain. A major benefit of the proposed method is that the magnitude of forest cover change of any specific region can be made available within a short time as often required by forest managers or policy-makers, especially after unexpected natural disturbances.
    Print ISSN: 0015-752X
    Electronic ISSN: 1464-3626
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-25
    Description: Simultaneous and accurate measurements of whole-plant instantaneous carbon-use efficiency (ICUE) and annual total carbon-use efficiency (TCUE) are difficult to make, especially for trees. One usually estimates ICUE based on the net photosynthetic rate or the assumed proportional relationship between growth efficiency and ICUE. However, thus far, protocols for easily estimating annual TCUE remain problematic. Here, we present a theoretical framework (based on the metabolic scaling theory) to predict whole-plant annual TCUE by directly measuring instantaneous net photosynthetic and respiratory rates. This framework makes four predictions, which were evaluated empirically using seedlings of nine Picea taxa: (i) the flux rates of CO 2 and energy will scale isometrically as a function of plant size, (ii) whole-plant net and gross photosynthetic rates and the net primary productivity will scale isometrically with respect to total leaf mass, (iii) these scaling relationships will be independent of ambient temperature and humidity fluctuations (as measured within an experimental chamber) regardless of the instantaneous net photosynthetic rate or dark respiratory rate, or overall growth rate and (iv) TCUE will scale isometrically with respect to instantaneous efficiency of carbon use (i.e., the latter can be used to predict the former) across diverse species. These predictions were experimentally verified. We also found that the ranking of the nine taxa based on net photosynthetic rates differed from ranking based on either ICUE or TCUE. In addition, the absolute values of ICUE and TCUE significantly differed among the nine taxa, with both ICUE and temperature-corrected ICUE being highest for Picea abies and lowest for Picea schrenkiana . Nevertheless, the data are consistent with the predictions of our general theoretical framework, which can be used to access annual carbon-use efficiency of different species at the level of an individual plant based on simple, direct measurements. Moreover, we believe that our approach provides a way to cope with the complexities of different ecosystems, provided that sufficient measurements are taken to calibrate our approach to that of the system being studied.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-23
    Description: Root traits in morphology, chemistry and anatomy are important to root physiological functions, but the differences between shallow and deep roots have rarely been studied in woody plants. Here, we selected three temperate hardwood species, Juglans mandshurica Maxim., Fraxinus mandschurica Rupr. and Phellodendron amurense Rupr., in plantations in northeastern China and measured morphological, anatomical and chemical traits of root tips (i.e., the first-order roots) at surface (0–10 cm) and subsurface (20–30 cm) soil layers. The objectives of this study were to identify how those traits changed with soil depth and to reveal potential functional differences. The results showed that root diameters in deep root tips were greater in J. mandshurica and F. mandschurica , but smaller in P. amurense . However, root stele diameter and the ratio of stele to root diameter in the subsurface layer were consistently greater in all three species, which may enhance their abilities to penetrate into soil. All deep roots exhibited lower tissue nitrogen concentration and respiration rate, which were possibly caused by lower nutrient availability in the subsurface soil layer. Significant differences between shallow and deep roots were observed in xylem structure, with deep roots having thicker stele, wider maximum conduit and greater number of conduits per stele. Compared with shallow roots, the theoretical hydraulic conductivities in deep roots were enhanced by 133% ( J. mandshurica ), 78% ( F. mandschurica ) and 217% ( P. amurense ), respectively, indicating higher efficiency of transportation. Our results suggest that trees’ root tip anatomical structure and physiological activity vary substantially with soil environment.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-24
    Description: Potassium (K) influences the photosynthesis process in a number of ways; however, the mechanisms underlying the photosynthetic response to differences in K supply are not well understood. Concurrent measurements of gas exchange and chlorophyll fluorescence were made to investigate the effect of K nutrition on photosynthetic efficiency and mesophyll conductance ( g m ) in hickory seedlings ( Carya cathayensis Sarg.) in a greenhouse. The results show that leaf K concentrations 〈0.7–0.8% appeared to limit the leaf net CO 2 assimilation rate ( A ), and that the relative limitation of photosynthesis due to g m and stomatal conductance ( g s ) decreased with increasing supplies of K. However, a sensitivity analysis indicated that A was most sensitive to the maximum carboxylation rate of Rubisco ( V c,max ) and the maximum rate of electron transport ( J max ). These results indicate that the photosynthetic rate is primarily limited by the biochemical processes of photosynthesis ( V c,max and J max ), rather than by g m and g s in K-deficient plants. Additionally, g m was closely correlated with g s and the leaf dry mass per unit area ( M A ) in hickory seedlings, which indicates that decreased g m and g s may be a consequence of leaf anatomical adaptation.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-05-06
    Description: Root diameter, a critical indicator of root physiological function, varies greatly among tree species, but the underlying mechanism of this high variability is unclear. Here, we sampled 50 tree species across tropical and temperate zones in China, and measured root morphological and anatomical traits along the first five branch orders in each species. Our objectives were (i) to reveal the relationships between root diameter, cortical thickness and stele diameter among tree species in tropical and temperate forests, and (ii) to investigate the relationship of both root morphological and anatomical traits with divergence time during species radiation. The results showed that root diameter was strongly affected by cortical thickness but less by stele diameter in both tropical and temperate species. Changes in cortical thickness explained over 90% of variation in root diameter for the first order, and ~74–87% for the second and third orders. Thicker roots displayed greater cortical thickness and more cortical cell layers than thinner roots. Phylogenetic analysis demonstrated that root diameter, cortical thickness and number of cortical cell layers significantly correlated with divergence time at the family level, showing similar variation trends in geological time. The results also suggested that trees tend to decrease their root cortical thickness rather than stele diameter during species radiation. The close linkage of variations in root morphology and anatomy to phylogeny as demonstrated by the data from the 50 tree species should provide some insights into the mechanism of root diameter variability among tree species.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-07-04
    Description: Tree roots are highly heterogeneous in form and function. Previous studies revealed that fine root respiration was related to root morphology, tissue nitrogen (N) concentration and temperature, and varied with both soil depth and season. The underlying mechanisms governing the relationship between root respiration and root morphology, chemistry and anatomy along the root branch order have not been addressed. Here, we examined these relationships of the first- to fifth-order roots for near surface roots (0–10 cm) of 22-year-old larch ( Larix gmelinii L.) and ash ( Fraxinus mandshurica L.) plantations. Root respiration rate at 18 °C was measured by gas phase O 2 electrodes across the first five branching order roots (the distal roots numbered as first order) at three times of the year. Root parameters of root diameter, specific root length (SRL), tissue N concentration, total non-structural carbohydrates (starch and soluble sugar) concentration (TNC), cortical thickness and stele diameter were also measured concurrently. With increasing root order, root diameter, TNC and the ratio of root TNC to tissue N concentration increased, while the SRL, tissue N concentration and cortical proportion decreased. Root respiration rate also monotonically decreased with increasing root order in both species. Cortical tissue (including exodermis, cortical parenchyma and endodermis) was present in the first three order roots, and cross sections of the cortex for the first-order root accounted for 68% (larch) and 86% (ash) of the total cross section of the root. Root respiration was closely related to root traits such as diameter, SRL, tissue N concentration, root TNC : tissue N ratio and stele-to-root diameter proportion among the first five orders, which explained up to 81–94% of variation in the rate of root respiration for larch and up to 83–93% for ash. These results suggest that the systematic variations of root respiration rate within tree fine root system are possibly due to the changes of tissue N concentration and anatomical structure along root branch orders in both tree species, which provide deeper understanding in the mechanism of how root traits affect root respiration in woody plants.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-11-22
    Print ISSN: 0002-9092
    Electronic ISSN: 1467-8276
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-02-04
    Print ISSN: 0021-924X
    Electronic ISSN: 1756-2651
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...