ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2014-12-13
    Beschreibung: As a bioinvasion spreads across a landscape from its point of introduction, damages rise roughly with the square of the distance from the original invasion. It is thus generally beneficial, at the landscape scale, to apply eradication or containment controls early if not immediately upon discovery. However, an individual property owner only has incentives to consider the costs and benefits of control on his/her own property rather than potential landscape-scale damages. Bioinvasions will therefore generally be under-controlled in a landscape of independent owners operating under a laissez-faire system. A mechanism is thus needed to induce early cooperative contributions to control costs from beneficiaries who would, without them, be invaded later. We develop a spatially-explicit, integrated model of invasion spread and human behavior to examine how different degrees of spatial cooperation affect patterns of invasion spread and the total costs and damages imposed. We compare individual laissez-faire, cooperative control by adjacent neighbors, and cooperative control by groups including more distant but nearby neighbors. As expected, private laissez-faire control decisions tend to under-control the invasion relative to socially optimal control under most circumstances. But a reasonably high fraction of first best payoffs can be achieved with only a modest geographical reach of cooperation. We also find that less extensive cooperation is needed to control invasions whose costs and damages otherwise lead to the largest externalities (circumstances with costs that are relatively low compared with damages). This suggests that even small amounts of cooperation to control bioinvasions can provide large social benefits.
    Schlagwort(e): Q15 - Land Ownership and Tenure ; Land Reform ; Land Use ; Irrigation, Q24 - Land, Q57 - Ecological Economics: Ecosystem Services ; Biodiversity Conservation ; Bioeconomics
    Print ISSN: 0002-9092
    Digitale ISSN: 1467-8276
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft , Wirtschaftswissenschaften
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-11-25
    Beschreibung: The current method for reconstructing gene regulatory networks faces a dilemma concerning the study of bio-medical problems. On the one hand, static approaches assume that genes are expressed in a steady state and thus cannot exploit and describe the dynamic patterns of an evolving process. On the other hand, approaches that can describe the dynamical behaviours require time-course data, which are normally not available in many bio-medical studies. To overcome the limitations of both the static and dynamic approaches, we propose a dynamic cascaded method (DCM) to reconstruct dynamic gene networks from sample-based transcriptional data. Our method is based on the intra-stage steady-rate assumption and the continuity assumption, which can properly characterize the dynamic and continuous nature of gene transcription in a biological process. Our simulation study showed that compared with static approaches, the DCM not only can reconstruct dynamical network but also can significantly improve network inference performance. We further applied our method to reconstruct the dynamic gene networks of hepatocellular carcinoma (HCC) progression. The derived HCC networks were verified by functional analysis and network enrichment analysis. Furthermore, it was shown that the modularity and network rewiring in the HCC networks can clearly characterize the dynamic patterns of HCC progression.
    Schlagwort(e): Computational Methods, Genomics
    Print ISSN: 0305-1048
    Digitale ISSN: 1362-4962
    Thema: Biologie
    Publiziert von Oxford University Press
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...