ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-07
    Description: Traditional medicinal literature and previous studies have reported the possible role of Cissus quadrangularis (CQ) as an anti-osteoporotic agent. This study examines the effectiveness of CQ in promoting osteoblast differentiation of the murine pre-osteoblast cell line, MC3T3-E1. Ethanolic extract of CQ (CQ-E) was found to affect growth kinetics of MC3T3-E1 cells in a dosage dependent manner. High concentrations of CQ-E (more than 10 µg/ml) have particularly adverse effects, while lower concentrations of 0.1 and 1 µg/ml were non-toxic and did not affect cell viability. Notably, cell proliferation was significantly increased at the lower concentrations of CQ-E. CQ-E treatment also augmented osteoblast differentiation, as reflected by a substantial increase in expression of the early osteoblast marker ALP activity, and at later stage, by mineralization of extracellular matrix compared to the control group. These findings suggest dose-dependent effect of CQ-E with lower concentrations exhibiting anabolic and osteogenic properties. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-18
    Description: The cell cycle in pluripotent human embryonic stem cells is governed by unique mechanisms that support unrestricted proliferation and competency for endodermal, mesodermal and ectodermal differentiation. The abbreviated G1 period with retention of uncompromised fidelity for genetic and epigenetic mechanisms operative in control of proliferation support competency for expansion of the pluripotent cell population that is fundamental for initial stages of development. Regulatory events during the G1 period of the pluripotent cell cycle are decisive for the transition from pluripotency to lineage commitment. Recent findings indicate that a G2 cell cycle pause is present in both endodermal and mesodermal lineage cells, and is obligatory for differentiation to endoderm. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-06-09
    Description: Three-dimensional organization of the chromatin has important roles in transcription, replication, DNA repair, and pathologic events such as translocations. There are two fundamental ways to study higher-order chromatin organization: microscopic and molecular approaches. In this review, we briefly introduce the molecular approaches, focusing on chromosome conformation capture or“3C” technology and its derivatives, which can be used to probe chromatin folding at resolutions beyond that provided by microscopy techniques. We further discuss the different types of data generated by the 3C-based methods and how they can be used to answer distinct biological questions. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-02-07
    Description: The serine/threonine kinase Akt/PKB promotes cancer cell growth and invasion through several downstream targets. Identification of novel substrates may provide new avenues for therapeutic intervention. Our study shows that Akt phosphorylates the cancer related transcription factor Runx2 resulting in stimulated DNA binding of the purified recombinant protein in vitro . Pharmacological inhibition of the PI3K/Akt pathway in breast cancer cells reduces DNA binding activity of Runx2 with concomitant reduction in the expression of metastasis related Runx2 target genes. Akt phosphorylates Runx2 at three critical residues within the runt DNA binding domain to enhance its in vivo genomic interactions with a target gene promoter, MMP13. Mutation of these three phosphorylation sites reduces Runx2 DNA binding activity, but does not interefere with CBFβ-Runx2 interactions. Consequently, expression of multiple metastasis-related genes is decreased and Runx2 mediated cell invasion is supressed. Thus, our work identifies Runx2 as a novel and important downstream mediator of the PI3K/Akt pathway that is linked to metastatic properties of breast cancer cells. J. Cell. Physiol. © 2013 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-25
    Description: Alterations in the epigenetic landscape are fundamental drivers of aberrant gene expression contributing to cancer progression and pathology. Understanding specific modes of epigenetic regulation can be used to identify novel biomarkers or targets for therapeutic intervention to clinically treat solid tumors and leukemias. The bivalent marking of gene promoters by H3K4me3 and H3K27me3 is a primary mechanism to poise genes for expression in pluripotent embryonic stem cells. In this study we interrogated three well-established mammary cell lines to model epigenetic reprogramming observed among breast cancer subtypes. Evidence is provided for a distinct bivalent signature, activating and repressive histone marks co-residing at the same gene promoter, in the MCF7 (ESR/PGR + ) luminal breast cancer cell line. We identified a subset of genes, enriched for developmental pathways that regulate cellular phenotype and signaling, and partially recapitulate the bivalent character observed in embryonic stem cells. We validated the biological relevance of this “oncofetal epigenetic” signature using data from ESR/PGR+ tumor samples from breast cancer patients. This signature of oncofetal epigenetic control is an informative biomarker and may provide novel therapeutic targets, selective for both recurring and treatment-resistant cancers. This article is protected by copyright. All rights reserved
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-05-03
    Description: Human embryonic stem cells and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory andstructural. The primary temporal context that the pluripotent self-renewal cell cycle of human embryonic stem cells (hESCs) is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the ESC cell cycle. This supports the requirements of pluripotent cells to self propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated embryonic stem cell cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle. J. Cell. Physiol. © 2012 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-02-16
    Description: Continental rifting involves a poorly understood sequence of lithospheric stretching, volcanism, and mantle flow that evolves to seafloor spreading. We present new insight from inversion of seismic traveltimes and waveforms beneath Arabia and surroundings. Low velocities occur beneath the southern Red Sea and Gulf of Aden, consistent with active spreading. However, hot material extends not below the northern Red Sea, but is offset eastward beneath Arabia, showing mantle flow from the Afar hotspot. The location of this channel beneath volcanic rocks erupted since rifting began 30 million years ago indicates that flow moves with Arabia. We propose that the absence of seafloor spreading in the northern Red Sea reflects the offset flow. This geometry may evolve to spreading in the Northern Red Sea, rifting of Arabia, or both. This situation has aspects of both active and passive rifting, showing that both can occur before coalescing to seafloor spreading.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-03-01
    Description: The chromatin remodeling complex SWI/SNF and the transcription factor C/EBPβ play critical roles in osteoblastic cells as they jointly control transcription of a number of bone-related target genes. The largest C/EBPβ isoform, LAP*, possesses a short additional N-terminal domain that has been proposed to mediate the interaction of this factor with SWI/SNF in myeloid cells. Here we examine the requirement of a functional N-terminus in C/EBPβ-LAP* for binding SWI/SNF and for recruiting this complex to the Ric-8B gene to mediate transcriptional repression. We find that both C/EBPβ-LAP* and SWI/SNF simultaneously bind to the Ric-8B promoter in differentiating osteoblasts that repress Ric-8B expression. This decreased expression of Ric-8B is not accompanied by significant changes in histone acetylation at the Ric-8B gene promoter sequence. A single aminoacid change at the C/EBPβ-LAP* N-terminus (R3L) that inhibits C/EBPβ-LAP*-SWI/SNF interaction, also prevents SWI/SNF recruitment to the Ric-8B promoter as well as C/EBPβ-LAP*-dependent repression of the Ric-8B gene. Inducible expression of the C/EBPβ-LAP*R3L protein in stably transfected osteoblastic cells demonstrates that this mutant protein binds to C/EBPβ-LAP*-target promoters and competes with the endogenous C/EBPβ factor. Together our results indicate that a functional N-terminus in C/EBPβ-LAP* is required for interacting with SWI/SNF and for Ric-8B gene repression in osteoblasts. J. Cell. Physiol. 9999: XX–XX, 2014. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-22
    Description: Core Binding Factor β (CBFβ) is complexed with the RUNX family of transcription factors in the nucleus to support activation or repression of genes related to bone (RUNX2), hematopoiesis (RUNX1) and gastrointestinal (RUNX3) development. Furthermore, RUNX proteins contribute to the onset and progression of different types of cancer. Although CBFβ localizes to cytoskeletal architecture, its biological role in the cytoplasmic compartment remains to be established. Additionally, the function and localization of CBFβ during the cell cycle are important questions relevant to its biological role. Here we show that CBFβ dynamically distributes in different stages of cell division and importantly is present during telophase at the midbody, a temporal structure important for successful cytokinesis. A functional role for CBFβ localization at the midbody is supported by striking defects in cytokinesis that include polyploidy and abscission failure following siRNA-mediated downregulation of endogenous CBFβ or overexpression of the inv(16) fusion protein CBFβ-SMMHC. Our results suggest that CBFβ retention in the midbody during cytokinesis reflects a novel function that contributes to epigenetic control. J. Cell. Physiol. 9999: XX–XX, 2014. © 2014 Wiley Periodicals, Inc.
    Electronic ISSN: 1097-4652
    Topics: Biology , Medicine
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-09-17
    Description: Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and  Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2 . These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter .
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...