ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-01-08
    Description: The 2010 Deepwater Horizon disaster remains the largest single accidental release of oil and gas into the ocean. During the 87-day release, scientists used oceanographic tools to collect wellhead oil and gas samples, interrogate microbial community shifts and activities, and track the chemical composition of dissolved oil in the ocean’s interior. In the decade since the disaster, field and laboratory investigations studied the physics and chemistry of irrupted oil and gas at high pressure and low temperature, the role of chemical dispersants in oil composition and microbial hydrocarbon degradation, and the impact of combined oil, gas and dispersants on the flora and fauna of coastal and deep-sea environments. The multi-faceted, multidisciplinary scientific response to the released oil, gas and dispersants culminated in a better understanding of the environmental factors that influence the short-term and long-term fate and transport of oil in marine settings. In this Review, we summarize the unique aspects of the Deepwater Horizon release and highlight the advances in oil chemistry and microbiology that resulted from novel applications of emerging technologies. We end with an outlook on the applicability of these findings to possible oil releases in future deep-sea drilling locations and newly-opened high-latitude shipping lanes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Metagenomes encode an enormous diversity of proteins, reflecting a multiplicity of functions and activities1,2. Exploration of this vast sequence space has been limited to a comparative analysis against reference microbial genomes and protein families derived from those genomes. Here, to examine the scale of yet untapped functional diversity beyond what is currently possible through the lens of reference genomes, we develop a computational approach to generate reference-free protein families from the sequence space in metagenomes. We analyse 26,931 metagenomes and identify 1.17 billion protein sequences longer than 35 amino acids with no similarity to any sequences from 102,491 reference genomes or the Pfam database3. Using massively parallel graph-based clustering, we group these proteins into 106,198 novel sequence clusters with more than 100 members, doubling the number of protein families obtained from the reference genomes clustered using the same approach. We annotate these families on the basis of their taxonomic, habitat, geographical and gene neighbourhood distributions and, where sufficient sequence diversity is available, predict protein three-dimensional models, revealing novel structures. Overall, our results uncover an enormously diverse functional space, highlighting the importance of further exploring the microbial functional dark matter.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...