ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: The carbon balance of peatlands is predicted to shift from a sink to a source this century. However, peatland ecosystems are still omitted from the main Earth system models that are used for future climate change projections, and they are not considered in integrated assessment models that are used in impact and mitigation studies. By using evidence synthesized from the literature and an expert elicitation, we define and quantify the leading drivers of change that have impacted peatland carbon stocks during the Holocene and predict their effect during this century and in the far future. We also identify uncertainties and knowledge gaps in the scientific community and provide insight towards better integration of peatlands into modelling frameworks. Given the importance of the contribution by peatlands to the global carbon cycle, this study shows that peatland science is a critical research area and that we still have a long way to go to fully understand the peatland–carbon–climate nexus.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-22
    Description: The coastal ocean contributes to regulating atmospheric greenhouse gas concentrations by taking up carbon dioxide (CO2) and releasing nitrous oxide (N2O) and methane (CH4). In this second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2), we quantify global coastal ocean fluxes of CO2, N2O and CH4 using an ensemble of global gap-filled observation-based products and ocean biogeochemical models. The global coastal ocean is a net sink of CO2 in both observational products and models, but the magnitude of the median net global coastal uptake is similar to 60% larger in models (-0.72 vs. -0.44 PgC year-1, 1998-2018, coastal ocean extending to 300 km offshore or 1,000 m isobath with area of 77 million km2). We attribute most of this model-product difference to the seasonality in sea surface CO2 partial pressure at mid- and high-latitudes, where models simulate stronger winter CO2 uptake. The coastal ocean CO2 sink has increased in the past decades but the available time-resolving observation-based products and models show large discrepancies in the magnitude of this increase. The global coastal ocean is a major source of N2O (+0.70 PgCO2-e year-1 in observational product and +0.54 PgCO2-e year-1 in model median) and CH4 (+0.21 PgCO2-e year-1 in observational product), which offsets a substantial proportion of the coastal CO2 uptake in the net radiative balance (30%-60% in CO2-equivalents), highlighting the importance of considering the three greenhouse gases when examining the influence of the coastal ocean on climate. The coastal ocean regulates greenhouse gases. It acts as a sink of carbon dioxide (CO2) but also releases nitrous oxide (N2O) and methane (CH4) into the atmosphere. This synthesis contributes to the second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP2) and provides a comprehensive view of the coastal air-sea fluxes of these three greenhouse gases at the global scale. We use a multi-faceted approach combining gap-filled observation-based products and ocean biogeochemical models. We show that the global coastal ocean is a net sink of CO2 in both observational products and models, but the coastal uptake of CO2 is similar to 60% larger in models than in observation-based products due to model-product differences in seasonality. The coastal CO2 sink is strengthening but the magnitude of this strengthening is poorly constrained. We also find that the coastal emissions of N2O and CH4 counteract a substantial part of the effect of coastal CO2 uptake in the atmospheric radiative balance (by 30%-60% in CO2-equivalents), highlighting the need to consider these three gases together to understand the influence of the coastal ocean on climate. We synthesize air-sea fluxes of CO2, nitrous oxide and methane in the global coastal ocean using observation-based products and ocean models The coastal ocean CO2 sink is 60% larger in ocean models than in observation-based products due to systematic differences in seasonality Coastal nitrous oxide and methane emissions offset 30%-60% of the CO2 coastal uptake in the net radiative balance
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Description: Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-05-16
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-05
    Description: This article documents the addition of 229 microsatellite marker loci to the Molecular Ecology Resources Database. Loci were developed for the following species: Acacia auriculiformis × Acacia mangium hybrid, Alabama argillacea, Anoplopoma fimbria, Aplochiton zebra, Brevicoryne brassicae, Bruguiera gymnorhiza, Bucorvus leadbeateri, Delphacodes detecta, Tumidagena minuta, Dictyostelium giganteum, Echinogammarus berilloni, Epimedium sagittatum, Fraxinus excelsior, Labeo chrysophekadion, Oncorhynchus clarki lewisi, Paratrechina longicornis, Phaeocystis antarctica, Pinus roxburghii and Potamilus capax. These loci were cross-tested on the following species: Acacia peregrinalis, Acacia crassicarpa, Bruguiera cylindrica, Delphacodes detecta, Tumidagena minuta, Dictyostelium macrocephalum, Dictyostelium discoideum, Dictyostelium purpureum, Dictyostelium mucoroides, Dictyostelium rosarium, Polysphondylium pallidum, Epimedium brevicornum, Epimedium koreanum, Epimedium pubescens, Epimedium wushanese and Fraxinus angustifolia.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties remain large. This review provides a new range of aerosol radiative forcing over the industrial era based on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical considerations, and observations. Improved understanding of aerosol absorption and the causes of trends in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward more negative values. The uncertainty will narrow in the future by continuing to critically combine multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and aerosol effects on liquid cloud amount and on ice clouds. Key Points: - An assessment of multiple lines of evidence supported by a conceptual model provides ranges for aerosol radiative forcing of climate change - Aerosol effective radiative forcing is assessed to be between -1.6 and -0.6 W m−2 at the 16–84% confidence level - Although key uncertainties remain, new ways of using observations provide stronger constraints for models
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-12-14
    Description: Current limitations in technology have prevented an extensive analysis of the connections among neurons, particularly within nonmammalian organisms. We developed a transsynaptic viral tracer originally for use in mice, and then tested its utility in a broader range of organisms. By engineering the vesicular stomatitis virus (VSV) to encode a fluorophore and either the rabies virus glycoprotein (RABV-G) or its own glycoprotein (VSV-G), we created viruses that can transsynaptically label neuronal circuits in either the retrograde or anterograde direction, respectively. The vectors were investigated for their utility as polysynaptic tracers of chicken and zebrafish visual pathways. They showed patterns of connectivity consistent with previously characterized visual system connections, and revealed several potentially novel connections. Further, these vectors were shown to infect neurons in several other vertebrates, including Old and New World monkeys, seahorses, axolotls, and Xenopus. They were also shown to infect two invertebrates, Drosophila melanogaster, and the box jellyfish, Tripedalia cystophora, a species previously intractable for gene transfer, although no clear evidence of transsynaptic spread was observed in these species. These vectors provide a starting point for transsynaptic tracing in most vertebrates, and are also excellent candidates for gene transfer in organisms that have been refractory to other methods.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-20
    Description: Based on quantitative X-ray diffraction mineralogical analysis of cores HU2008029-0006/0008 (857-m water depth) located south of the Davis Strait sill, we seek answers to two questions: (i) the temporal correlation of NW Labrador Shelf Sea Heinrich (H-) and Baffin Bay detrital carbonate (BBDC) events, and (ii) the provenance of the sediments? A sediment-unmixing model (SedUnMix) is used to determine provenance variations. Although 12 radiocarbon dates were obtained there were many age reversals and we favour a depth/age model for HU2008029-0008PC based on correlations to well-dated neighbouring cores north and south of Davis Strait. We find no correlation between H- and BBDC events except for H-0, which appears to be a broadly synchronous event along the NE Canadian margin and is correlative with an episode of major moraine building along this flank of the Laurentide Ice Sheet. Unmixing of the sediment composition based on six potential glacial source regions indicates that the bulk of the sediment in 0008PC is derived from glacial erosion of West Greenland, but is punctuated by intervals when dolomite-rich sediments, derived from outcrops north of Baffin Bay, dominate the composition. Estimated dates on these BBDC events are -13, 25 and 30–38 cal ka BP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-02-08
    Description: Climate change challenges plankton communities, but evolutionary adaptation could mitigate the potential impacts. Here, we tested with the phytoplankton species Emiliania huxleyi whether adaptation to a stressor under laboratory conditions leads to equivalent fitness gains in a more natural environment. We found that fitness advantages that had evolved under laboratory conditions were masked by pleiotropic effects in natural plankton communities. Moreover, new genotypes with highly variable competitive abilities evolved on timescales significantly shorter than climate change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...