ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-01-28
    Description: Inherited alleles account for most of the genetic risk for schizophrenia. However, new (de novo) mutations, in the form of large chromosomal copy number changes, occur in a small fraction of cases and disproportionally disrupt genes encoding postsynaptic proteins. Here we show that small de novo mutations, affecting one or a few nucleotides, are overrepresented among glutamatergic postsynaptic proteins comprising activity-regulated cytoskeleton-associated protein (ARC) and N-methyl-d-aspartate receptor (NMDAR) complexes. Mutations are additionally enriched in proteins that interact with these complexes to modulate synaptic strength, namely proteins regulating actin filament dynamics and those whose messenger RNAs are targets of fragile X mental retardation protein (FMRP). Genes affected by mutations in schizophrenia overlap those mutated in autism and intellectual disability, as do mutation-enriched synaptic pathways. Aligning our findings with a parallel case-control study, we demonstrate reproducible insights into aetiological mechanisms for schizophrenia and reveal pathophysiology shared with other neurodevelopmental disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237002/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237002/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fromer, Menachem -- Pocklington, Andrew J -- Kavanagh, David H -- Williams, Hywel J -- Dwyer, Sarah -- Gormley, Padhraig -- Georgieva, Lyudmila -- Rees, Elliott -- Palta, Priit -- Ruderfer, Douglas M -- Carrera, Noa -- Humphreys, Isla -- Johnson, Jessica S -- Roussos, Panos -- Barker, Douglas D -- Banks, Eric -- Milanova, Vihra -- Grant, Seth G -- Hannon, Eilis -- Rose, Samuel A -- Chambert, Kimberly -- Mahajan, Milind -- Scolnick, Edward M -- Moran, Jennifer L -- Kirov, George -- Palotie, Aarno -- McCarroll, Steven A -- Holmans, Peter -- Sklar, Pamela -- Owen, Michael J -- Purcell, Shaun M -- O'Donovan, Michael C -- 089062/Wellcome Trust/United Kingdom -- 098051/Wellcome Trust/United Kingdom -- 2 P50MH066392-05A1/MH/NIMH NIH HHS/ -- G0800509/Medical Research Council/United Kingdom -- G0801418/Medical Research Council/United Kingdom -- I01 BX002395/BX/BLRD VA/ -- R01 HG005827/HG/NHGRI NIH HHS/ -- R01HG005827/HG/NHGRI NIH HHS/ -- R01MH071681/MH/NIMH NIH HHS/ -- R01MH099126/MH/NIMH NIH HHS/ -- WT089062/Wellcome Trust/United Kingdom -- WT098051/Wellcome Trust/United Kingdom -- England -- Nature. 2014 Feb 13;506(7487):179-84. doi: 10.1038/nature12929. Epub 2014 Jan 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Department of Bioinformatics, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia [3] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; 1] Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK. ; Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; Department of Psychiatry, Medical University, Sofia 1431, Bulgaria. ; Centre for Neuroregeneration, University of Edinburgh, Edinburgh EH16 4SB, UK. ; 1] Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK [2] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [3] Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00290 Helsinki, Finland. ; 1] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [3] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; 1] Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA. ; 1] Division of Psychiatric Genomics in the Department of Psychiatry, and Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [3] Analytic and Translational Genetics Unit, Psychiatric and Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24463507" target="_blank"〉PubMed〈/a〉
    Keywords: Child Development Disorders, Pervasive/genetics ; Cytoskeletal Proteins/metabolism ; Exome/genetics ; Fragile X Mental Retardation Protein/metabolism ; Humans ; Intellectual Disability/genetics ; *Models, Neurological ; Mutation/*genetics ; Mutation Rate ; Nerve Net/*metabolism/physiopathology ; Nerve Tissue Proteins/metabolism ; Neural Pathways/*metabolism/physiopathology ; Phenotype ; RNA, Messenger/genetics/metabolism ; Receptors, N-Methyl-D-Aspartate/metabolism ; Schizophrenia/*genetics/metabolism/*physiopathology ; Substrate Specificity ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-01-28
    Description: Schizophrenia is a heritable brain illness with unknown pathogenic mechanisms. Schizophrenia's strongest genetic association at a population level involves variation in the major histocompatibility complex (MHC) locus, but the genes and molecular mechanisms accounting for this have been challenging to identify. Here we show that this association arises in part from many structurally diverse alleles of the complement component 4 (C4) genes. We found that these alleles generated widely varying levels of C4A and C4B expression in the brain, with each common C4 allele associating with schizophrenia in proportion to its tendency to generate greater expression of C4A. Human C4 protein localized to neuronal synapses, dendrites, axons, and cell bodies. In mice, C4 mediated synapse elimination during postnatal development. These results implicate excessive complement activity in the development of schizophrenia and may help explain the reduced numbers of synapses in the brains of individuals with schizophrenia.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4752392/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sekar, Aswin -- Bialas, Allison R -- de Rivera, Heather -- Davis, Avery -- Hammond, Timothy R -- Kamitaki, Nolan -- Tooley, Katherine -- Presumey, Jessy -- Baum, Matthew -- Van Doren, Vanessa -- Genovese, Giulio -- Rose, Samuel A -- Handsaker, Robert E -- Schizophrenia Working Group of the Psychiatric Genomics Consortium -- Daly, Mark J -- Carroll, Michael C -- Stevens, Beth -- McCarroll, Steven A -- R01 HG006855/HG/NHGRI NIH HHS/ -- R01 MH077139/MH/NIMH NIH HHS/ -- T32 GM007753/GM/NIGMS NIH HHS/ -- U01 MH105641/MH/NIMH NIH HHS/ -- England -- Nature. 2016 Feb 11;530(7589):177-83. doi: 10.1038/nature16549. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; MD-PhD Program, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts 02115, USA. ; Analytical and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814963" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Sequence ; Animals ; Axons/metabolism ; Base Sequence ; Brain/metabolism/pathology ; Complement C4/chemistry/*genetics ; Complement Pathway, Classical ; Dendrites/metabolism ; Gene Dosage/genetics ; Gene Expression Regulation/genetics ; Genetic Predisposition to Disease/*genetics ; Genetic Variation/*genetics ; Haplotypes/genetics ; Humans ; Major Histocompatibility Complex/genetics ; Mice ; Models, Animal ; Neuronal Plasticity/genetics/physiology ; Polymorphism, Single Nucleotide/genetics ; RNA, Messenger/analysis/genetics ; Risk Factors ; Schizophrenia/*genetics/pathology ; Synapses/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...