ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-06-16
    Description: Autism spectrum disorder (ASD) is a group of conditions characterized by impaired social interaction and communication, and restricted and repetitive behaviours. ASD is a highly heritable disorder involving various genetic determinants. Shank2 (also known as ProSAP1) is a multi-domain scaffolding protein and signalling adaptor enriched at excitatory neuronal synapses, and mutations in the human SHANK2 gene have recently been associated with ASD and intellectual disability. Although ASD-associated genes are being increasingly identified and studied using various approaches, including mouse genetics, further efforts are required to delineate important causal mechanisms with the potential for therapeutic application. Here we show that Shank2-mutant (Shank2(-/-)) mice carrying a mutation identical to the ASD-associated microdeletion in the human SHANK2 gene exhibit ASD-like behaviours including reduced social interaction, reduced social communication by ultrasonic vocalizations, and repetitive jumping. These mice show a marked decrease in NMDA (N-methyl-D-aspartate) glutamate receptor (NMDAR) function. Direct stimulation of NMDARs with D-cycloserine, a partial agonist of NMDARs, normalizes NMDAR function and improves social interaction in Shank2(-/-) mice. Furthermore, treatment of Shank2(-/-) mice with a positive allosteric modulator of metabotropic glutamate receptor 5 (mGluR5), which enhances NMDAR function via mGluR5 activation, also normalizes NMDAR function and markedly enhances social interaction. These results suggest that reduced NMDAR function may contribute to the development of ASD-like phenotypes in Shank2(-/-) mice, and mGluR modulation of NMDARs offers a potential strategy to treat ASD.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Won, Hyejung -- Lee, Hye-Ryeon -- Gee, Heon Yung -- Mah, Won -- Kim, Jae-Ick -- Lee, Jiseok -- Ha, Seungmin -- Chung, Changuk -- Jung, Eun Suk -- Cho, Yi Sul -- Park, Sae-Geun -- Lee, Jung-Soo -- Lee, Kyungmin -- Kim, Daesoo -- Bae, Yong Chul -- Kaang, Bong-Kiun -- Lee, Min Goo -- Kim, Eunjoon -- England -- Nature. 2012 Jun 13;486(7402):261-5. doi: 10.1038/nature11208.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, KAIST, Daejeon 305-701, Korea.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22699620" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/*genetics ; Animals ; Antimetabolites/pharmacology ; *Autistic Disorder/genetics/metabolism ; Behavior, Animal/*drug effects/physiology ; Benzamides/*pharmacology ; Cycloserine/*pharmacology ; Disease Models, Animal ; Female ; Male ; Mice ; Mice, Inbred C57BL ; Nerve Tissue Proteins/*genetics ; Pyrazoles/*pharmacology ; Receptors, N-Methyl-D-Aspartate/*agonists/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-10-02
    Description: Although most genes are expressed biallelically, a number of key genomic sites--including immune and olfactory receptor regions--are controlled monoallelically in a stochastic manner, with some cells expressing the maternal allele and others the paternal allele in the target tissue. Very little is known about how this phenomenon is regulated and programmed during development. Here, using mouse immunoglobulin-kappa (Igkappa) as a model system, we demonstrate that although individual haematopoietic stem cells are characterized by allelic plasticity, early lymphoid lineage cells become committed to the choice of a single allele, and this decision is then stably maintained in a clonal manner that predetermines monoallelic rearrangement in B cells. This is accompanied at the molecular level by underlying allelic changes in asynchronous replication timing patterns at the kappa locus. These experiments may serve to define a new concept of stem cell plasticity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Farago, Marganit -- Rosenbluh, Chaggai -- Tevlin, Maya -- Fraenkel, Shira -- Schlesinger, Sharon -- Masika, Hagit -- Gouzman, Masha -- Teng, Grace -- Schatz, David -- Rais, Yoach -- Hanna, Jacob H -- Mildner, Alexander -- Jung, Steffen -- Mostoslavsky, Gustavo -- Cedar, Howard -- Bergman, Yehudit -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Oct 25;490(7421):561-5. doi: 10.1038/nature11496. Epub 2012 Sep 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, POB 12272, Ein Kerem, Jerusalem 91120, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23023124" target="_blank"〉PubMed〈/a〉
    Keywords: *Alleles ; Animals ; *Cell Lineage ; Chromatin Immunoprecipitation ; Clone Cells/cytology/immunology/metabolism ; DNA Replication Timing ; Female ; Gene Rearrangement, B-Lymphocyte, Light Chain/*genetics ; Hematopoiesis ; Humans ; Immunoglobulin kappa-Chains/*genetics/immunology ; Male ; Mice ; Mice, Inbred BALB C ; Models, Animal ; Models, Immunological ; Precursor Cells, B-Lymphoid/*cytology/immunology/*metabolism ; Stochastic Processes
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-02-19
    Description: The mature gut renews continuously and rapidly throughout adult life, often in a damage-inflicting micro-environment. The major driving force for self-renewal of the intestinal epithelium is the Wnt-mediated signalling pathway, and Wnt signalling is frequently hyperactivated in colorectal cancer. Here we show that casein kinase Ialpha (CKIalpha), a component of the beta-catenin-destruction complex, is a critical regulator of the Wnt signalling pathway. Inducing the ablation of Csnk1a1 (the gene encoding CKIalpha) in the gut triggers massive Wnt activation, surprisingly without causing tumorigenesis. CKIalpha-deficient epithelium shows many of the features of human colorectal tumours in addition to Wnt activation, in particular the induction of the DNA damage response and cellular senescence, both of which are thought to provide a barrier against malignant transformation. The epithelial DNA damage response in mice is accompanied by substantial activation of p53, suggesting that the p53 pathway may counteract the pro-tumorigenic effects of Wnt hyperactivation. Notably, the transition from benign adenomas to invasive colorectal cancer in humans is typically linked to p53 inactivation, underscoring the importance of p53 as a safeguard against malignant progression; however, the mechanism of p53-mediated tumour suppression is unknown. We show that the maintenance of intestinal homeostasis in CKIalpha-deficient gut requires p53-mediated growth control, because the combined ablation of Csnk1a1 and either p53 or its target gene p21 (also known as Waf1, Cip1, Sdi1 and Cdkn1a) triggered high-grade dysplasia with extensive proliferation. Unexpectedly, these ablations also induced non-proliferating cells to invade the villous lamina propria rapidly, producing invasive carcinomas throughout the small bowel. Furthermore, in p53-deficient gut, loss of heterozygosity of the gene encoding CKIalpha caused a highly invasive carcinoma, indicating that CKIalpha functions as a tumour suppressor when p53 is inactivated. We identified a set of genes (the p53-suppressed invasiveness signature, PSIS) that is activated by the loss of both p53 and CKIalpha and which probably accounts for the brisk induction of invasiveness. PSIS transcription and tumour invasion were suppressed by p21, independently of cell cycle control. Restraining tissue invasion through suppressing PSIS expression is thus a novel tumour-suppressor function of wild-type p53.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Elyada, Ela -- Pribluda, Ariel -- Goldstein, Robert E -- Morgenstern, Yael -- Brachya, Guy -- Cojocaru, Gady -- Snir-Alkalay, Irit -- Burstain, Ido -- Haffner-Krausz, Rebecca -- Jung, Steffen -- Wiener, Zoltan -- Alitalo, Kari -- Oren, Moshe -- Pikarsky, Eli -- Ben-Neriah, Yinon -- England -- Nature. 2011 Feb 17;470(7334):409-13. doi: 10.1038/nature09673.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Lautenberg Center for Immunology, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21331045" target="_blank"〉PubMed〈/a〉
    Keywords: Adenoma/enzymology/genetics/metabolism/pathology ; Animals ; Casein Kinase Ialpha/*deficiency/genetics/metabolism ; Cell Aging ; Cell Line ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Colorectal Neoplasms/enzymology/genetics/metabolism/*pathology ; Cyclin-Dependent Kinase Inhibitor p21/deficiency/genetics/metabolism ; DNA Damage ; Disease Progression ; Female ; Fibroblasts ; Genes, APC ; Genes, Tumor Suppressor ; Homeodomain Proteins/genetics/metabolism ; Humans ; Intestinal Mucosa/enzymology/metabolism/pathology ; Loss of Heterozygosity ; Male ; Mice ; Mice, Knockout ; Neoplasm Invasiveness/pathology ; Signal Transduction ; Tumor Suppressor Protein p53/deficiency/genetics/*metabolism ; Tumor Suppressor Proteins/deficiency/genetics/metabolism ; Wnt Proteins/metabolism ; beta Catenin/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...