ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-05-19
    Description: Copy number variants (CNVs) are major contributors to genetic disorders. We have dissected a region of the 16p11.2 chromosome--which encompasses 29 genes--that confers susceptibility to neurocognitive defects when deleted or duplicated. Overexpression of each human transcript in zebrafish embryos identified KCTD13 as the sole message capable of inducing the microcephaly phenotype associated with the 16p11.2 duplication, whereas suppression of the same locus yielded the macrocephalic phenotype associated with the 16p11.2 deletion, capturing the mirror phenotypes of humans. Analyses of zebrafish and mouse embryos suggest that microcephaly is caused by decreased proliferation of neuronal progenitors with concomitant increase in apoptosis in the developing brain, whereas macrocephaly arises by increased proliferation and no changes in apoptosis. A role for KCTD13 dosage changes is consistent with autism in both a recently reported family with a reduced 16p11.2 deletion and a subject reported here with a complex 16p11.2 rearrangement involving de novo structural alteration of KCTD13. Our data suggest that KCTD13 is a major driver for the neurodevelopmental phenotypes associated with the 16p11.2 CNV, reinforce the idea that one or a small number of transcripts within a CNV can underpin clinical phenotypes, and offer an efficient route to identifying dosage-sensitive loci.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366115/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366115/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Golzio, Christelle -- Willer, Jason -- Talkowski, Michael E -- Oh, Edwin C -- Taniguchi, Yu -- Jacquemont, Sebastien -- Reymond, Alexandre -- Sun, Mei -- Sawa, Akira -- Gusella, James F -- Kamiya, Atsushi -- Beckmann, Jacques S -- Katsanis, Nicholas -- F32MH087123/MH/NIMH NIH HHS/ -- HD06286/HD/NICHD NIH HHS/ -- MH-084018/MH/NIMH NIH HHS/ -- MH-091230/MH/NIMH NIH HHS/ -- P50 MH094268/MH/NIMH NIH HHS/ -- P50 MH094268-02/MH/NIMH NIH HHS/ -- R01 MH091230/MH/NIMH NIH HHS/ -- R01 MH092443/MH/NIMH NIH HHS/ -- England -- Nature. 2012 May 16;485(7398):363-7. doi: 10.1038/nature11091.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Human Disease Modeling and Department of Cell biology, Duke University, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22596160" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apoptosis/genetics ; Cell Proliferation ; Chromosomes, Human, Pair 16/*genetics ; DNA Copy Number Variations/*genetics ; Gene Dosage/*genetics ; Gene Duplication/genetics ; Head/*abnormalities/embryology ; Humans ; Mice ; Microcephaly/*genetics ; Nuclear Proteins/*genetics/metabolism ; Organ Size/genetics ; *Phenotype ; RNA, Messenger/genetics/metabolism ; Sequence Deletion/genetics ; Transcription, Genetic ; Up-Regulation ; Zebrafish/abnormalities/embryology/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 20 (1980), S. 1054-1057 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Iodinated polystyrene (IPS) is obtained by direct iodination of polystyrene and its lithographic characteristics are investigated. The sensitivity of the polymer to electron beams is increased as the result of iodination by a factor of about 10 and reaches 1 μC/cm2. Coated IPS films are very stable and no changes in exposure characteristics are observed even after pre-baking at 220°C for 10 min. It is found that crosslinking does not proceed in a vacuum after electron beam exposure. The milling rate of IPS under Ar+ bombardment is measured to be 0.25 nm/s. This is lower than that of poly(glycidyl methacrylate-co-ethyl acrylate) (0.67 nm/s) and that of permalloy (0.42 nm/s), both obtained under the same conditions. The mechanism of sensitization by iodination is discussed.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science: Polymer Letters Edition 14 (1976), S. 667-669 
    ISSN: 0360-6384
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Additional Material: 2 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...