ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-12-17
    Description: Recent observations of the extrasolar planet HD 189733b did not reveal the presence of water in the emission spectrum of the planet. Yet models of such 'hot-Jupiter' planets predict an abundance of atmospheric water vapour. Validating and constraining these models is crucial to understanding the physics and chemistry of planetary atmospheres in extreme environments. Indications of the presence of water in the atmosphere of HD 189733b have recently been found in transmission spectra, where the planet's atmosphere selectively absorbs the light of the parent star, and in broadband photometry. Here we report the detection of strong water absorption in a high-signal-to-noise, mid-infrared emission spectrum of the planet itself. We find both a strong downturn in the flux ratio below 10 microm and discrete spectral features that are characteristic of strong absorption by water vapour. The differences between these and previous observations are significant and admit the possibility that predicted planetary-scale dynamical weather structures may alter the emission spectrum over time. Models that match the observed spectrum and the broadband photometry suggest that heat redistribution from the dayside to the nightside is weak. Reconciling this with the high nightside temperature will require a better understanding of atmospheric circulation or possible additional energy sources.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Grillmair, Carl J -- Burrows, Adam -- Charbonneau, David -- Armus, Lee -- Stauffer, John -- Meadows, Victoria -- van Cleve, Jeffrey -- von Braun, Kaspar -- Levine, Deborah -- England -- Nature. 2008 Dec 11;456(7223):767-9. doi: 10.1038/nature07574.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Spitzer Science Center, 1200 East California Boulevard, Pasadena, California 91125, USA. carl@ipac.caltech.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19079054" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 5 (1967), S. 101-112 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The weight-average molecular weights of polymers of acrylonitrile prepared by a free-radical initiator and an organometallic catalyst have been determined by lightscattering measurements in N,N-dimethylformamide, dimethyl sulfoxide, and dimethylacetamide at 25°C. and in dimethyl sulfoxide at 140°C. The apparent molecular weights of the polymers prepared with the NaAlEt3S(i-Pr) catalyst in DMF at -78°C. (referred to as high-melting polymers) changed from 54,800, 82,700, and 480,000 when measured in DMF at 25°C. to 36,000, 41,600, and 225,000 when measured in DMSO at 140°C., whereas the molecular weights of the free-radical polymers remained unchanged. Furthermore, from results obtained in DMSO at 140°C., The intrinsic viscosity-molecular-weight relationships were found to be identical for the high-melting and the free-radical polymer and in substantial agreement with an equation reported by Cleland and Stockmayer. The apparent decrease in molecular weight of the high-melting polymer from 25 to 140°C. indicates rather clearly that the high-melting polymers are associated in DMF at 25°C. The “aggregates,” even though present only at low concentrations, raised the weight-average molecular weight markedly but affected the number-average molecular weight only slightly, thus giving a high M̄w/M̄n ratio. It appears likely that when temperature and solvent are such that association does not occur, linear PAN's will have approximately the same intrinsic viscosity-molecular weight relationship (subject of course to slight change by polydispersity). The often reported abnormal molecular weight of samples prepared by solution polymerization especially at low temperatures, may be attributed to branching, or to an association, as reported here. The nature of association of PAN in dilute solution is also discussed.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...