ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 4 (1983), S. 327-339 
    ISSN: 0197-8462
    Keywords: 60-Hz electric fields ; perinatal exposure ; rat ; visual-evoked response ; central nervous system ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Two independent series of experiments were performed on 114 male Sprague-Dawley derived, albino rat pups, which represented 61 litters in experimental series I and 53 litters in experimental series II. Animals were exposed for 20 h/day from conception to testing (postnatal days 11-20) to a vertical, 65-kV/m, 60-Hz electric field or sham-exposed. Recordings of the visual-evoked response (VER) were obtained using a small silver ball electrode placed epidurally over the visual cortex. Visual stimuli consisted of 10-μS light flashes delivered at 0.2 Hz. Computer-averaged VERs were obtained and power spectral analyses (fast Fourier transform) were performed on the tapered (split cosine-bell window), averaged VERs. The expected age-related changes were clearly evident; however, a detailed analysis of VER component latencies, peak-to-peak amplitude, and power spectra failed to reveal any consistent, statistically significant effect of exposure to 60-Hz electric fields.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 1 (1980), S. 131-147 
    ISSN: 0197-8462
    Keywords: electric fields ; rat ; sciatic nerve ; vagus nerve ; superior cervical sympathetic ganglion ; chronic exposure ; 60 Hz ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Several reports have suggested that the nervous system can be affected by exposure to electric fields and that these effects may have detrimental health consequences for the exposed organism. The purpose of this study was to investigate the effects of chronic (30-day) exposure of rats to a 60-Hz, 100-kV/m electric field on synaptic transmission and peripheral-nerve function. One hundred forty-four rats, housed in individual polycarbonate cages were exposed to uniform, vertical, 60-Hz electric fields in a system free of corona discharge and ozone formation and in which the animals did not receive spark discharges or other shocks during exposure. Following 30 days of exposure to the electric field, superior cervical sympathetic ganglia, vagus and sciatic nerves were removed from rats anesthetized with urethan, placed in a temperature-controlled chamber, and superfused with a modified mammalian Ringer's solution equilibrated with 95% O2 and 5% CO2. Several measures and tests were used to characterize synaptic transmission and peripheral-nerve function. These included amplitude, area, and configuration of the postsynaptic or whole-nerve compound-action potential; conduction velocity; accommodation; refractory period; strength-duration curves; conditioning-test (C-T) response, frequency response; post-tetanic response; and high-frequency-induced fatigue. The results of a series of neurophysiologic tests and measurements indicate that only synaptic transmission is significantly and consistently affected by chronic (30-day) exposure to a 60-Hz, 100-kV/m electric field. Specifically, an increase in synaptic excitability was detected in replicated measurements of the C-T response ratio. In addition, there are trends in other data that can be interpreted to suggest a generalized increase in neuronal excitability in exposed animals.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...