ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-06-05
    Description: Significance Particulate organic carbon (POC) formed by photosynthesis in the sunlit surface ocean fuels the ecosystems in the dark ocean below. We show that mesoscale fronts and eddies, which are ubiquitous physical features in subtropical oceans, generate three-dimensional intrusions connecting the surface to deep ocean. Intrusions are enriched in total POC due to enhancement of small, nonsinking photosynthetic plankton and free-living bacteria that resemble surface microbial communities. Flow-driven export of POC, estimated using an approximation of eddy physics, is the same order of magnitude as export by sinking POC, which was previously thought to dominate export. These observations reveal coupling of surface and deep ocean productivity and biodiversity and give insight into mechanisms by which the ocean transports carbon to depth. Abstract Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology; air-sea fluxes of heat, freshwater, and momentum; and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises that have come between October and December. During the 2008 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 8 WHOI surface mooring that had been deployed in October 2007, deployment of a new (Stratus 9) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. A buoy for the Pacific tsunami warning system was also serviced in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2008 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Ronald H. Brown (Ship) Cruise RB08-06 ; Marine meteorology ; Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: From May 27, 2018 to June 02, 2018, a scientific campaign was conducted in the Alboran Sea as part of an ONR Departmental Research Initiative, CALYPSO. The pilot cruise involved two ships: the R/V Socib, tasked with sampling fixed lines repeatedly, and the NRV Alliance that surveyed along the trajectory of Lagrangian platforms. A large variety of assets were deployed from the NRV Alliance, with the objective to identify coherent Lagrangian pathways from the surface ocean to interior. As part of the field campaign, an Underway-CTD (UCTD) system was used to measure vertical profiles of salinity, temperature and other properties while steaming, to achieve closely spaced measurements in the horizontal along the ship's track. Both a UCTD probe and an biooptically augmented probe, named EcoCTD, were deployed. The EcoCTD collects concurrent physical and bio-optical observations. This report focuses exclusively on the data collected by these two underway systems. It describes th e datasets collected during the pilot cruise, as well as the important processing steps developed for the EcoCTD.
    Description: Funding was provided by the Office of Naval Research under Contract #N000141613130
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: The long-range scientific objective of the Coupled Boundary Layer Air Sea Transfer (CBLAST) project is to observe and understand the temporal and spatial variability of the upper ocean, to identify the processes that determine that variability, and to examine its predictability. Air-sea interaction is of particular interest, but attention is also paid to the coupling of the sub-thermocline ocean to the mixed layer and to both the open ocean and littoral regimes. We seek to do this over a wide range of environmental conditions with the intent of improving our understanding of upper ocean dynamics and of the physical processes that determine the vertical and horizontal structure of the upper ocean. Field work for CBLAST was conducted during the summers of 2001, 2002, and 2003 off the south shore of Martha’s Vineyard, Massachusetts. The 2003 field work was conducted from the following platforms: heavy moorings, light moorings, drifters, F/V Nobska, CIRPAS Pelican aircraft, and an IR Cessna Aircraft. This report documents the 2003 field work and includes field notes, platform descriptions, discussion of data returns, and mooring logs. The 2003 Intensive Operating Period (IOP) was very successful and a high data return was seen.
    Description: Funding was provided by the Office of Naval Research under contract numbers N00014-01-1-0029 and N00014-05-10090.
    Keywords: Air-sea interaction ; Upper ocean dynamics ; Mixed layer
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 16410944 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: King Abdullah University of Science and Technology (KAUST) is being built near Thuwal, Saudi Arabia with the goal of becoming a world-class, graduate-level research university. As a step toward this goal, KAUST has partnered with the Woods Hole Oceanographic Institution (WHOI) to undertake various studies of the oceanography of the Red Sea in order to establish a research program in ocean sciences by the time the university opens its doors in the fall of 2009. Two of the KAUST-WHOI research projects involve deployment of surface moorings and associated instrumentation to measure physical properties of the Red Sea, such as temperature, salinity, and currents, at four locations off the coast of Saudi Arabia. The goal of these measurements is to better understand the evolution and dynamics of the circulation and air-sea interaction in the Red Sea. Two surface moorings and two bottom tripods (PI, Steven Lentz) were deployed at 50-55-m depth near 21°57'N, 38°46'E over the continental shelf close to the Saudi coast. An additional surface mooring/bottom tripod pair was deployed near 21°58'N, 38°50'E at the outer fringe of a reef system directly onshore of the shelf mooring/tripod pairs (PI, Lentz). The coastal moorings carry instruments to estimate temperature, salinity, and fluorescence; and the nearby bottom tripods support instruments to measure bottom pressure and the vertical profile of the currents. Additional instruments, principally bottom temperature sensors, were deployed over the reef system onshore of the shelf moorings. One air-sea interaction mooring (PI, J. Thomas Farrar) was deployed at 693-m depth near 22°10'N, 38°30'E. The air-sea interaction mooring carries instruments for measuring temperature, salinity, (water) velocity, winds, air temperature, humidity, barometric pressure, incident sunlight, infrared radiation, precipitation, and surface waves. A coastal meteorological tower was also installed on the KAUST campus in Thuwal (PI, Farrar). These measurements are of value because there are few time series of oceanographic and meteorological properties of the Red Sea that can be used to characterize the circulation, test numerical models of the Red Sea circulation, or formulate theoretical models of the physics of the Red Sea circulation. These measurements will permit a characterization of the Red Sea circulation with high temporal resolution at the mooring locations, and accurate in-situ estimates of the air-sea exchange of heat, freshwater, and momentum. In October 2008, a cruise was made aboard the R/V Oceanus to deploy the shelf and air-sea interaction moorings, and other fieldwork (e.g., tower instrumentation and deployment of reef instrumentation) was conducted after the cruise. Some additional data were collected during the cruise with shipboard instrumentation. This report documents the cruise and the data collected during the fall 2008 fieldwork.
    Description: Funding for this report was provided by the King Abdullah University of Science and Technology (KAUST) under a cooperative research agreement with Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: AirSWOT is an aircraft mounted instrument for measuring and imaging sea surface height (SSH), and it is similar to the SWOT (Surface Water Ocean Topography) instrument that will be deployed on a satellite in 2020. A field campaign was conducted in April 2015 to examine the performance of AirSWOT and to better understand how the measurement is affected by surface waves and currents. Supporting measurements were collected from the R/V Shana Rae, the R/V Fulmar, and a second aircraft (a Partenavia P68 operated by Aspen Helicopter, Oxnard,CA for UCSD/SIO). From 17-20 April 2015, the R/V Shana Rae, a 50-foot research vessel, was used for collection of Underway CTD (or UCTD) measurements and for deployment and recovery of three EM/APEX floats in a study area off the central California coast. The UCTD measurements are being used to estimate the sea surface height signal associated with variations in ocean density structure. The EM/APEX floats provide time series of the same, as well as vertical profiles of ocean velocity. The purpose of this report is to document the shipboard operations on the R/V Shana Rae and the resulting UCTD and EM/APEX data sets.
    Description: This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, sponsored by the United States Government under the prime Contract NNN12AA01C between the Caltech and NASA under subcontract number 1523706. Farrar and Girton were also supported by NASA Grants NNX13AD90G.
    Keywords: Shana Rae (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: The Ocean Reference Station at 20°S, 85°W under the stratus clouds west of northern Chile is being maintained to provide ongoing climate-quality records of surface meteorology (air-sea fluxes of heat, freshwater, and momentum), and of upper ocean temperature, salinity, and velocity variability. The Stratus Ocean Reference Station (ORS Stratus) is supported by the National Oceanic and Atmospheric Administration’s (NOAA) Climate Observation Program. It is recovered and redeployed annually, with cruises between October and December. During the October 2007 cruise on the NOAA ship Ronald H. Brown to the ORS Stratus site, the primary activities were recovery of the Stratus 7 WHOI surface mooring that had been deployed in October 2006, deployment of a new (Stratus 8) WHOI surface mooring at that site; in-situ calibration of the buoy meteorological sensors by comparison with instrumentation put on board the ship by staff of the NOAA Earth System Research Laboratory (ESRL); and observations of the stratus clouds and lower atmosphere by NOAA ESRL. Meteorological sensors on a buoy for the Pacific tsunami warning system were also serviced, in collaboration with the Hydrographic and Oceanographic Service of the Chilean Navy (SHOA). The DART (Deep-Ocean Assessment and Reporting of Tsunami) carries IMET sensors and subsurface oceanographic instruments. A new DART II buoy was deployed north of the STRATUS buoy, by personnel from the National Data Buoy Center (NDBC) Argo floats and drifters were launched, and CTD casts carried out during the cruise. The ORS Stratus buoys are equipped with two Improved Meteorological (IMET) systems, which provide surface wind speed and direction, air temperature, relative humidity, barometric pressure, incoming shortwave radiation, incoming longwave radiation, precipitation rate, and sea surface temperature. Additionally, the Stratus 8 buoy received a partial pressure of CO2 detector from the Pacific Marine Environmental Laboratory (PMEL). IMET data are made available in near real time using satellite telemetry. The mooring line carries instruments to measure ocean salinity, temperature, and currents. The ESRL instrumentation used during the 2007 cruise included cloud radar, radiosonde balloons, and sensors for mean and turbulent surface meteorology. Finally, the cruise hosted a teacher participating in NOAA’s Teacher at Sea Program.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Marine meteorology ; Oceanography ; Ronald H. Brown (Ship) Cruise RB07-09
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: A computational fluid dynamics (CFD) study was performed of the wind flow around two ocean buoys used to collect meteorological data from sensors mounted on the buoy tower. The CFD approach allowed wind velocity perturbations to be evaluated as a step towards quantifying the impacts of flow distortion on buoy wind measurements. The two buoys evaluated were the Wood Hole Oceanographic Institution WHOI Modular Ocean Buoy System and the University of New Hampshire (UNH) 2.1 m discus buoy. Engineering drawings were used to create a computational mesh for each buoy. Suitable solution methods were then developed and tested, CFD simulations were performed, and the results evaluated. Eleven CFD runs were performed, six for the WHOI buoy and five for the UNH buoy. Highlights of analysis for the WHOI buoy were that horizontal flow distortion was relatively small (〈1%) for head-on flow, but that the tendency of the buoy to establish an angle of about 30 degrees relative to the flow resulted in acceleration at one anemometer location and deceleration at the other. Highlights of the analysis for the UNH buoy were that flow distortion of about 5% at the wind sensor location could be cut by about a factor of two by either raising the sensor by 2 ft or removing solar panels.
    Description: Funding was provided by the National Oceanic and Atmospheric Administration under Grant No. NA17RJ1223 for the Cooperative Institute for Climate and Ocean Research (CICOR).
    Keywords: Flow distortion investigation ; Modular Ocean Buoy System ; Fluid dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...