ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (7)
  • Genetics  (5)
  • genetic engineering  (2)
  • Wiley-Blackwell  (7)
  • National Academy of Sciences
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 49 (1996), S. 101-105 
    ISSN: 0006-3592
    Keywords: Xanthomonas maltophilia ; benzoic acid ; Vitreoscilla hemoglobin gene ; genetic engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Xanthomonas maltophilia was transformed with the gene encoding Vitreoscilla (bacterial) hemoglobin, vgb, and the growth of the engineered strain was compared with that of the untransformed strain using benzoic acid as the sole carbon source. In general, growth of the engineered strain was greater than that of the untransformed strain; this was true for experiments using both overnight cultures and log phase cells as inocula, but particularly for the latter. In both cases the engineered strain was also more efficient than the untransformed strain in converting benzoic acid into biomass. © 1996 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 57 (1998), S. 477-483 
    ISSN: 0006-3592
    Keywords: Vitreoscilla hemoglobin ; bacterial hemoglobin ; Serratia marcescens ; genetic engineering ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The bacterial hemoglobin from Vitreoscilla has been shown to increase growth yield and yield of genetically engineered product in Escherichia coli. To test the generality of this phenomenon, the approximately 560-bp bacterial (Vitreoscilla) hemoglobin gene (vgb) (including the native promoter), cloned into the vector pUC8 in two constructs containing about 1650 and 850 bp, respectively, of Vitreoscilla DNA downstream of vgb, was transformed into Serratia marcescens. After several transfers of the transformants on selective media, both plasmids became stable in this host and the resulting strains produced hemoglobin. Both transformants were compared, regarding growth in liquid Luria-Bertani (LB) medium, with untransformed S. marcescens and S. marcescens transformed with pUC8. The vgb-bearing strains had about 5 times lower maximum viable cell numbers than the strains without hemoglobin, but the former also had late log or early stationary phase cells that were 5-10 times larger than those of the latter. Further, on a dry cell mass basis the presence of vgb inhibited cell growth in liquid media. In contrast, growth of the vgb-bearing strains on LB plates based on cell mass (determined from colony size) was markedly enhanced compared with that of the pUC8 transformant. Respiration of the vgb-bearing strains was lower than that of the strains without vgb on a cell mass basis. These results show that the presence of vgb can have idiosyncratic effects and is not always an aid to cell growth so that its use for genetic engineering must be tested on a case by case basis. ©1998 John Wiley & Sons, Inc. Biotechnol Bioeng 57: 477-483, 1998.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 14 (1998), S. 869-875 
    ISSN: 0749-503X
    Keywords: calmodulin ; CMD1 ; ALG1 ; K. lactis ; EF hand ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The KlCMD1 gene was isolated from a Kluyveromyces lactis genomic library as a suppressor of the Saccharomyces cerevisiae temperature-sensitive mutant spc110-124, an allele previously shown to be suppressed by elevated copy number of the S. cerevisiae calmodulin gene CMD1. The KlCMD1 gene encodes a polypeptide which is 95% identical to S. cerevisiae calmodulin and 55% identical to calmodulin from Schizosaccharomyces pombe.Complementation of a S. cerevisiae cmd1 deletion mutant by KlCMD1 demonstrates that this gene encodes a functional calmodulin homologue. Multiple sequence alignment of calmodulins from yeast and multicellular eukaryotes shows that the K. lactis and S. cerevisiae calmodulins are considerably more closely related to each other than to other calmodulins, most of which have four functional Ca2+-binding EF hand domains. Thus like its S. cerevisiae counterpart Cmd1p, the KlCMD1 product is predicted to form only three Ca2+-binding motifs. The KlCMD1 sequence has been assigned Accession Number AJ002021 in the EMBL/GenBank database. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 12 (1996), S. 1647-1675 
    ISSN: 0749-503X
    Keywords: yeast ; phosphorylation ; protein phosphatase ; PP1 ; PP2A ; PP2B ; calcineurin ; Sit4 ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use powerful genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; GLC7 ; protein phosphatase ; mitosis ; MET3 promoter ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Saccharomyces cerevisiae possesses a single essential gene (GLC7) encoding protein phosphatase 1 (PP1). Elevated expression of this gene from the GAL1 promoter is highly detrimental to the cell, causing a growth defect and aberrant bud morphology, which leads to cells exhibiting long, extended buds. By comparison, expression of GLC7 from the weaker MET3 promoter was without significant effect on either growth or morphology. However, repression of GLC7 expression from the MET3 promoter in cells where the MET3-GLC7 fusion was the sole source of PP1 resulted in a mitotic delay. Such cultures showed a massive decrease in the rate of proliferation in conjunction with a significant increase in the proportion of large, budded cells. 4′,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining and anti-tubulin immunofluorescence analysis of these cells revealed that many were blocked in mitosis, with a short spindle and DAPI-stained material stretched between the mother and daughter cell within the bud neck. These results support a role for PP1 in the completion of mitosis in S. cerevisiae.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: TRP1 ; histone H3 ; histone H4 ; pyrophosphatase ; Kluyveromyces ; yeast ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The TRP1 gene of the yeast Kluyveromyces lactis has been cloned from a genomic library by complementation of the Saccharomyces cerevisiae trpl-289 mutation. The gene was located within the clone by transposon mutagenesis and the coding region identified by DNA sequencing. This has indicated that K. lactis TRP1 encodes a 210-amino acid polypeptide which shows 53% identity to the homologous S. cerevisiae protein. The K. lactis TRP1 gene has been disrupted by substituting the S. cerevisiae URA3 gene for a large part of the TRP1 coding sequence. Replacement of the chromosomal TRP1 locus with this construction has enabled the production of non-reverting trp1- strains of K. lactis, while a genetic analysis of the disrupted allele confirmed that the TRP1 gene had been cloned. DNA sequencing has also shown that the K. lactis TRP1 sequences is flanked by genes encoding inorganic pyrophosphatase and histone H3, which we have designated IPP and HHT1 respectively. Hybridization studies have shown that in common with S. cerevisiae, K. lactis has two copies of the histone H3 gene. Each H3 gene is closely linked to a gene encoding histone H4 and in both yeast species the IPP gene is tightly linked to one of the histone gene pairs.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: Cell cycle ; toxin ; K. lactis ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The Kluyveromyces lactis toxin is a heterotrimeric protein which irreversible arrests proliferation of sensitive Saccharomyces cerevisiae cells in the G1 phase of the cell cycle. By expressing the γ subunit of the toxin in sensitive yeast cells from a conditional promoter, it was previously demonstrated that it alone is required for inhibition (Tokunaga et al. (1989). Nucleic Acids Res. 17, 3435-3446). Here we show that, like native exogenous toxin, intracellular γ subunit expression promoters a striking arrest of sensitive cells in G1. However, unlike the G1 arrest caused by native toxin, that induced by the γ subunit alone does not result in reduced cellular viability and is fully and rapidly reversible, suggesting that the G1 arrest and the irreversibility of action may reflect different aspects of the toxin's interaction with sensitive cells. We have selected a large number of S. cerevisiae mutants which are highly resistant to the toxin in order to study its mode of action in more detail. Complementation analysis demonstrated that all but one of the mutants were recessive and these defined four separate genes. Members of two complementation groups concurrently acquired resistance to intracellular γ subunit expression, suggesting that they contain a modified toxin target site. The other two genes appear to be required for entry of the γ subunit into the sensitive cell since these mutants, while refractory to exogenous toxin, were fully sensitive to intracellular γ subunit expression.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...