ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Royal Society  (2)
  • National Academy of Sciences  (1)
  • 1
    Publication Date: 2017-05-22
    Description: Divergent selection may initiate ecological speciation extremely rapidly. How often and at what pace ecological speciation proceeds to yield strong reproductive isolation is more uncertain. Here, we document a case of extraordinarily rapid speciation associated with ecological selection in the postglacial Baltic Sea. European flounders (Platichthys flesus) in the Baltic exhibit two contrasting reproductive behaviors: pelagic and demersal spawning. Demersal spawning enables flounders to thrive in the low salinity of the Northern Baltic, where eggs cannot achieve neutral buoyancy. We show that demersal and pelagic flounders are a species pair arising from a recent event of speciation. Despite having a parapatric distribution with extensive overlap, the two species are reciprocally monophyletic and show strongly bimodal genotypic clustering and no evidence of contemporary migration, suggesting strong reproductive isolation. Divergence across the genome is weak but shows strong signatures of selection, a pattern suggestive of a recent ecological speciation event. We propose that spawning behavior in Baltic flounders is the trait under ecologically based selection causing reproductive isolation, directly implicating a process of ecological speciation. We evaluated different possible evolutionary scenarios under the approximate Bayesian computation framework and estimate that the speciation process started in allopatry ∼2,400 generations ago, following the colonization of the Baltic by the demersal lineage. This is faster than most known cases of ecological speciation and represents the most rapid event of speciation ever reported for any marine vertebrate.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-28
    Description: Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks ( Pungitius pungitius ) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if there was population differentiation in the response to treatments. We detected differences in plasticity of the bulbus olfactorius (chemosensory centre) between habitats: marine fish were not plastic, whereas pond fish had larger bulbi olfactorii in the presence of perceived predation. Marine fish had larger bulbus olfactorius overall. Irrespective of population origin, the hypothalamus was smaller in the presence of perceived predatory risk. Our results demonstrate that perceived predation risk can influence brain development, and that the effect of an environmental factor on brain development may depend on the evolutionary history of a given population in respect to this environmental factor.
    Print ISSN: 1744-9561
    Electronic ISSN: 1744-957X
    Topics: Biology
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-11-01
    Description: Comparative studies of quantitative and neutral genetic differentiation ( Q ST - F ST tests) provide means to detect adaptive population differentiation. However, Q ST - F ST tests can be overly liberal if the markers used deflate F ST below its expectation, or overly conservative if methodological biases lead to inflated F ST estimates. We investigated how marker type and filtering criteria for marker selection influence Q ST - F ST comparisons through their effects on F ST using simulations and empirical data on over 18 000 in silico genotyped microsatellites and 3.8 million single-locus polymorphism (SNP) loci from four populations of nine-spined sticklebacks ( Pungitius pungitius ). Empirical and simulated data revealed that F ST decreased with increasing marker variability, and was generally higher with SNPs than with microsatellites. The estimated baseline F ST levels were also sensitive to filtering criteria for SNPs: both minor alleles and linkage disequilibrium (LD) pruning influenced F ST estimation, as did marker ascertainment. However, in the case of stickleback data used here where Q ST is high, the choice of marker type, their genomic location, ascertainment and filtering made little difference to outcomes of Q ST - F ST tests. Nevertheless, we recommend that Q ST - F ST tests using microsatellites should discard the most variable loci, and those using SNPs should pay attention to marker ascertainment and properly account for LD before filtering SNPs. This may be especially important when level of quantitative trait differentiation is low and levels of neutral differentiation high.
    Electronic ISSN: 2054-5703
    Topics: Natural Sciences in General
    Published by The Royal Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...