ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • National Academy of Sciences  (1)
  • Oxford University Press  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-02-18
    Description: The successful application of heterosis in hybrid rice has dramatically improved rice productivity, but the genetic mechanism for heterosis in the hybrid rice remains unclear. In this study, we generated two populations of rice F1hybrids with present-day commercial hybrid parents, genotyped the parents with 50k SNP chip and genome resequencing, and recorded the phenotype of ∼2,000 hybrids at three field trials. By integrating these data with the collected genotypes of ∼4,200 rice landraces and improved varieties that were reported previously, we found that the male and female parents have different levels of genome introgressions from other rice subpopulations, includingindica,aus, andjaponica, therefore shaping heterotic loci in the hybrids. Among the introgressed exogenous genome, we found that heterotic loci, includingGhd8/DTH8,Gn1a, andIPA1existed in wild rice, but were significantly divergently selected among the rice subpopulations, suggesting these loci were subject to environmental adaptation. During modern rice hybrid breeding, heterotic loci were further selected by removing loci with negative effect and fixing loci with positive effect and pyramid breeding. Our results provide insight into the genetic basis underlying the heterosis of elite hybrid rice varieties, which could facilitate a better understanding of heterosis and rice hybrid breeding.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-15
    Description: Tree-ring δ13C and δ18O of dominant Dahurian larch and Mongolia pine in the permafrost region of the northern Great Higgnan Mountains, China were used to elucidate species-specific ecophysiological responses to warming temperatures and increasing CO2 over the past century. Larch and pine stable carbon discrimination (Δ13C) 13C and δ18O in tree rings both showed synchronous changes during the investigated period (1901–2010), but with species-specific isotopic responses to atmospheric enriched CO2 and warming. Tree-ring Δ13C and δ18O were controlled by both maximum temperature and moisture conditions (precipitation, relative humidity and vapor pressure deficit), but with different growth periods (Δ13C in June–July and δ18O in July–August, respectively). In addition, stable isotopes of larch showed relatively greater sensitivity to moisture deficits than pine. Climatic conditions from 1920 to 1960 strongly and coherently regulated tree-ring Δ13C and δ18O through stomatal conductance. However, climatic-sensitivities of tree-ring Δ13C and δ18O recently diverged, implying substantial adjustments of stomatal conductance, photosynthetic rate and altered water sources over recent decades, which reveal the varied impacts of each factor on tree-ring Δ13C and δ18O over time. Based on expected changes in leaf gas-exchange, we isolated the impacts of atmospheric CO2 and climate change on intrinsic water-use efficiency (iWUE) over the past century. Higher intracellular CO2 in pine than larch from 1960 onwards suggests this species may be more resilient to severe droughts in the future. Our data also illustrated no weakening of the iWUE response to increasing CO2 in trees from this permafrost region. The overall pattern of CO2 enrichment and climate impacts on iWUE of pine and larch were similar, but warming increased iWUE of larch to a greater extent than that of pine over recent two decades. Taken together, our findings highlight the importance of considering how leaf gas-exchange responses to atmospheric CO2 concentration influence species-specific responses to climate and the alteration of the hydrological environment in forests growing in regions historically dominated by permafrost that will be changing rapidly in response to future warming and increased CO2.
    Print ISSN: 0829-318X
    Electronic ISSN: 1758-4469
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...