ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chromatin and Epigenetics  (18)
  • Oxford University Press  (18)
  • National Academy of Sciences
  • 1
    Publication Date: 2014-11-28
    Description: Genome-wide assessment of protein–DNA interaction by chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) is a key technology for studying transcription factor (TF) localization and regulation of gene expression. Signal-to-noise-ratio and signal specificity in ChIP-seq studies depend on many variables, including antibody affinity and specificity. Thus far, efforts to improve antibody reagents for ChIP-seq experiments have focused mainly on generating higher quality antibodies. Here we introduce KOIN (knockout implemented normalization) as a novel strategy to increase signal specificity and reduce noise by using TF knockout mice as a critical control for ChIP-seq data experiments. Additionally, KOIN can identify ‘hyper ChIPable regions’ as another source of false-positive signals. As the use of the KOIN algorithm reduces false-positive results and thereby prevents misinterpretation of ChIP-seq data, it should be considered as the gold standard for future ChIP-seq analyses, particularly when developing ChIP-assays with novel antibody reagents.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-12
    Description: Androgen receptor (AR) variants (AR-Vs) expressed in prostate cancer (PCa) lack the AR ligand binding domain (LBD) and function as constitutively active transcription factors. AR-V expression in patient tissues or circulating tumor cells is associated with resistance to AR-targeting endocrine therapies and poor outcomes. Here, we investigated the mechanisms governing chromatin binding of AR-Vs with the goal of identifying therapeutic vulnerabilities. By chromatin immunoprecipitation and sequencing (ChIP-seq) and complementary biochemical experiments, we show that AR-Vs display a binding preference for the same canonical high-affinity androgen response elements (AREs) that are preferentially engaged by AR, albeit with lower affinity. Dimerization was an absolute requirement for constitutive AR-V DNA binding and transcriptional activation. Treatment with the bromodomain and extraterminal (BET) inhibitor JQ1 resulted in inhibition of AR-V chromatin binding and impaired AR-V driven PCa cell growth in vitro and in vivo . Importantly, this was associated with a novel JQ1 action of down-regulating AR-V transcript and protein expression. Overall, this study demonstrates that AR-Vs broadly restore AR chromatin binding events that are otherwise suppressed during endocrine therapy, and provides pre-clinical rationale for BET inhibition as a strategy for inhibiting expression and chromatin binding of AR-Vs in PCa.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-02-20
    Description: The Illumina HumanMethylation450 BeadChip is increasingly utilized in epigenome-wide association studies, however, this array-based measurement of DNA methylation is subject to measurement variation. Appropriate data preprocessing to remove background noise is important for detecting the small changes that may be associated with disease. We developed a novel background correction method, ENmix, that uses a mixture of exponential and truncated normal distributions to flexibly model signal intensity and uses a truncated normal distribution to model background noise. Depending on data availability, we employ three approaches to estimate background normal distribution parameters using (i) internal chip negative controls, (ii) out-of-band Infinium I probe intensities or (iii) combined methylated and unmethylated intensities. We evaluate ENmix against other available methods for both reproducibility among duplicate samples and accuracy of methylation measurement among laboratory control samples. ENmix out-performed other background correction methods for both these measures and substantially reduced the probe-design type bias between Infinium I and II probes. In reanalysis of existing EWAS data we show that ENmix can identify additional CpGs, and results in smaller P -value estimates for previously-validated CpGs. We incorporated the method into R package ENmix , which is freely available from Bioconductor website.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-17
    Description: Three-dimensional organization of chromatin is fundamental for transcriptional regulation. Tissue-specific transcriptional programs are orchestrated by transcription factors and epigenetic regulators. The RUNX2 transcription factor is required for differentiation of precursor cells into mature osteoblasts. Although organization and control of the bone-specific Runx2-P1 promoter have been studied extensively, long-range regulation has not been explored. In this study, we investigated higher-order organization of the Runx2-P1 promoter during osteoblast differentiation. Mining the ENCODE database revealed interactions between Runx2-P1 and  Supt3h promoters in several non-mesenchymal human cell lines. Supt3h is a ubiquitously expressed gene located within the first intron of Runx2 . These two genes show shared synteny across species from humans to sponges. Chromosome conformation capture analysis in the murine pre-osteoblastic MC3T3-E1 cell line revealed increased contact frequency between Runx2-P1 and Supt3h promoters during differentiation. This increase was accompanied by enhanced DNaseI hypersensitivity along with RUNX2 and CTCF binding at the Supt3h promoter. Furthermore, interplasmid-3C and luciferase reporter assays showed that the Supt3h promoter can modulate Runx2-P1 activity via direct association. Taken together, our data demonstrate physical proximity between Runx2-P1 and Supt3h promoters, consistent with their syntenic nature. Importantly, we identify the Supt3h promoter as a potential regulator of the bone-specific Runx2-P1 promoter .
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-11-12
    Description: Understanding the role of a given transcription factor (TF) in regulating gene expression requires precise mapping of its binding sites in the genome. Chromatin immunoprecipitation-exo, an emerging technique using exonuclease to digest TF unbound DNA after ChIP, is designed to reveal transcription factor binding site (TFBS) boundaries with near-single nucleotide resolution. Although ChIP-exo promises deeper insights into transcription regulation, no dedicated bioinformatics tool exists to leverage its advantages. Most ChIP-seq and ChIP-chip analytic methods are not tailored for ChIP-exo, and thus cannot take full advantage of high-resolution ChIP-exo data. Here we describe a novel analysis framework, termed MACE (model-based analysis of ChIP-exo) dedicated to ChIP-exo data analysis. The MACE workflow consists of four steps: (i) sequencing data normalization and bias correction; (ii) signal consolidation and noise reduction; (iii) single-nucleotide resolution border peak detection using the Chebyshev Inequality and (iv) border matching using the Gale-Shapley stable matching algorithm. When applied to published human CTCF, yeast Reb1 and our own mouse ONECUT1/HNF6 ChIP-exo data, MACE is able to define TFBSs with high sensitivity, specificity and spatial resolution, as evidenced by multiple criteria including motif enrichment, sequence conservation, direct sequence pileup, nucleosome positioning and open chromatin states. In addition, we show that the fundamental advance of MACE is the identification of two boundaries of a TFBS with high resolution, whereas other methods only report a single location of the same event. The two boundaries help elucidate the in vivo binding structure of a given TF, e.g. whether the TF may bind as dimers or in a complex with other co-factors.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-07-09
    Description: Dam identification (DamID) is a powerful technique to generate genome-wide maps of chromatin protein binding. Due to its high sensitivity, it is particularly suited to study the genome interactions of chromatin proteins in small tissue samples in model organisms such as Drosophila . Here, we report an intein-based approach to tune the expression level of Dam and Dam-fusion proteins in Drosophila by addition of a ligand to fly food. This helps to suppress possible toxic effects of Dam. In addition, we describe a strategy for genetically controlled expression of Dam in a specific cell type in complex tissues. We demonstrate the utility of the latter by generating a glia-specific map of Polycomb in small samples of brain tissue. These new DamID tools will be valuable for the mapping of binding patterns of chromatin proteins in Drosophila tissues and especially in cell lineages.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-04-02
    Description: DNA methylation is one of the most important epigenetic alterations involved in the control of gene expression. Bisulfite sequencing of genomic DNA is currently the only method to study DNA methylation patterns at single-nucleotide resolution. Hence, next-generation sequencing of bisulfite-converted DNA is the method of choice to investigate DNA methylation profiles at the genome-wide scale. Nevertheless, whole genome sequencing for analysis of human methylomes is expensive, and a method for targeted gene analysis would provide a good alternative in many cases where the primary interest is restricted to a set of genes. Here, we report the successful use of a custom Agilent SureSelect Target Enrichment system for the hybrid capture of bisulfite-converted DNA. We prepared bisulfite-converted next-generation sequencing libraries, which are enriched for the coding and regulatory regions of 174 ADME genes (i.e. genes involved in the metabolism and distribution of drugs). Sequencing of these libraries on Illumina’s HiSeq2000 revealed that the method allows a reliable quantification of methylation levels of CpG sites in the selected genes, and validation of the method using pyrosequencing and the Illumina 450K methylation BeadChips revealed good concordance.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-20
    Description: To improve the epigenomic analysis of tissues rich in 5-hydroxymethylcytosine (hmC), we developed a novel protocol called TAB-Methyl-SEQ, which allows for single base resolution profiling of both hmC and 5-methylcytosine by targeted next-generation sequencing. TAB-Methyl-SEQ data were extensively validated by a set of five methodologically different protocols. Importantly, these extensive cross-comparisons revealed that protocols based on Tet1-assisted bisulfite conversion provided more precise hmC values than TrueMethyl-based methods. A total of 109 454 CpG sites were analyzed by TAB-Methyl-SEQ for mC and hmC in 188 genes from 20 different adult human livers. We describe three types of variability of hepatic hmC profiles: (i) sample-specific variability at 40.8% of CpG sites analyzed, where the local hmC values correlate to the global hmC content of livers (measured by LC-MS), (ii) gene-specific variability, where hmC levels in the coding regions positively correlate to expression of the respective gene and (iii) site-specific variability, where prominent hmC peaks span only 1 to 3 neighboring CpG sites. Our data suggest that both the gene- and site-specific components of hmC variability might contribute to the epigenetic control of hepatic genes. The protocol described here should be useful for targeted DNA analysis in a variety of applications.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-02-18
    Description: The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-12-02
    Description: DNA methylation is an important epigenetic modification involved in many biological processes and diseases. Recent developments in whole genome bisulfite sequencing (WGBS) technology have enabled genome-wide measurements of DNA methylation at single base pair resolution. Many experiments have been conducted to compare DNA methylation profiles under different biological contexts, with the goal of identifying differentially methylated regions (DMRs). Due to the high cost of WGBS experiments, many studies are still conducted without biological replicates. Methods and tools available for analyzing such data are very limited. We develop a statistical method, DSS-single, for detecting DMRs from WGBS data without replicates. We characterize the count data using a rigorous model that accounts for the spatial correlation of methylation levels, sequence depth and biological variation. We demonstrate that using information from neighboring CG sites, biological variation can be estimated accurately even without replicates. DMR detection is then carried out via a Wald test procedure. Simulations demonstrate that DSS-single has greater sensitivity and accuracy than existing methods, and an analysis of H1 versus IMR90 cell lines suggests that it also yields the most biologically meaningful results. DSS-single is implemented in the Bioconductor package DSS.
    Keywords: Chromatin and Epigenetics
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...