ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Munksgaard International Publishers  (3)
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Inulin-type fructans are stored in the tuberous roots of the Brazilian cerrado plant Viguiera discolor Baker (Asteraceae). In Cynara scolymus (artichoke) and Echinops ritro (globe thistle), the fructans have a considerably higher degree of polymerization (DP) than in Cichorium intybus (chicory) and Helianthus tuberosus (Jerusalem artichoke). It was shown before that the higher DP in some species can be attributed to the properties of their fructan: fructan 1-fructosyl transferases (1-FFTs; EC 2.4.1.100), enzymes responsible for chain elongation. Here, we describe the cloning of a high DP (hDP) 1-FFT cDNA from V. discolor and its heterologous expression in Pichia pastoris. Starting from 1-kestose and Neosugar P (a mixture of oligo-inulins from microbial origin) as substrates, the recombinant enzyme produces a typical hDP inulin profile in vitro, closely resembling the one observed in vivo. The enzyme shows no invertase activity and sucrose: sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity in vitro. Pattern evolution during incubation suggests that inulins with DP ≥ 6 are much better substrates than sucrose or lower DP oligo-fructans. Because hDP inulin-type fructans show superior properties for specific food and non-food applications, the hDP 1-FFT gene from V. discolor has potential for the production of hDP inulin in vitro or in transgenic crops.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 106 (1999), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Witloof chicory (Cichorium intybus L. var. foliosum cv. Flash) was sown in acid-washed vermiculite in a controlled growth chamber. After 1 month of growth, one half of the chicory plants were defoliated whereas the intact chicory plants remained as a control. Twenty-four hours after defoliation, a very sharp decrease in hexose, sucrose, and total fructan concentration was observed in the roots. This coincided with a strong decrease in sucrose:sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) activity and a strong increase in fructan 1-exohydrolase (1-FEH; EC 3.2.1.80) activity. After day 5, 1-SST activity increased and 1-FEH activity decreased. However, from day 5 to 15, both the activities of 1-SST and acid invertase (EC 3.2.1.26) remained significantly lower than in the control plants. From 10 days after defoliation, fructan synthesis resumed and hexose and sucrose concentrations increased. Up to now, 1-FEH activity was believed to occur only in mature tissues (end of the growing season, storage, forcing, or sprouting). Therefore, the rather unexpected finding that 1-FEH can also be induced in very young chicory roots after defoliation suggests that 1-FEH can be considered a ‘survival’ enzyme that can be induced at any physiological stage when energy demands increase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Copenhagen : Munksgaard International Publishers
    Physiologia plantarum 105 (1999), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Witloof chicory seeds (Cichorium intybus L. var. foliosum cv. Flash) were sown in acid-washed vermiculite in a controlled environment growth chamber. Plants received a nitrogen poor (“N-poor”: 0.2 mM NH4NO3) but otherwise complete medium, or a nitrogen rich (“N-rich”: 2 mM NH4NO3) medium. After 1 month of growth the fructan concentration in the “N-poor” plants was about five times higher and also the activity of sucrose:sucrose 1-fructosyl transferase (1-SST; EC 2.4.1.99) was twice as high as in “N-rich” plants. The activities of the catabolic enzymes fructan 1-exohydrolase (1-FEH; EC 3.2.1.80) and acid invertase (EC 3.2.1.26) were higher in the “N-rich” plants where significant energy was invested in root and leaf growth. After one month of growth, part of the “N-poor” plants were switched to the “N-rich” medium. One day after this switch, a sharp decrease in sucrose and glucose concentration was observed in the roots. During the following days, both the activities of 1-SST and fructan:fructan 1-fructosyl transferase (1-FFT; EC 2.4.1.100) decreased and the 1-FEH and invertase activities increased. These changes were correlated with a decrease in fructan concentration. Ten days after the switch, glucose and sucrose concentrations increased again and fructan synthesis resumed. During this period 1-SST activity increased and 1-FEH activity decreased. Apparently 1-SST, 1-FFT and 1-FEH simultaneously control fructan in young chicory roots. The rather unexpected finding that 1-FEH activity, which was believed to occur only in older material, can be induced in very young roots indicates that this enzyme can be induced at any physiological stage.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...