ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Munksgaard International Publishers  (1)
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In a chilling-sensitive plant, cucumber, chilling of leaves in the light results in irreversible damage to PSI. Recent in vitro studies suggested that hydroxyl radicals, which are formed in the presence of H2O2 and reduced Fe-S centers, are involved in the PSI inhibition. We therefore examined this possibility in vivo. Chilling of leaves at 5°C in the light caused a temporary increase in H2O2 concentration, which was probably due to the net H2O2 production in vivo. The activity, measured at 5°C, of the thylakoid ascorbate peroxidase (APX), a key enzyme of the H2O2-scavenging system, was about 20% of that measured at 25°C. The isolated thylakoids retaining high thylakoid APX activity did not show light-dependent net H2O2 production at 25°C. However, at 5°C, net production of H2O2 was observed. Since the rate of electron flow to molecular oxygen in the isolated thylakoids was ca 5 mmol e− mol−1 Chl s−1 at 5°C, the H2O2-scavenging capacity was below this level. When intact leaves were illuminated at 5°C at an irradiance of 100 µmol m−2 s−1, the rate of electron transport through PSII was ca 20 mmol e− mol−1 Chl s−1 and more than 80% of QA was in the reduced state. Since thylakoids are uncoupled in cucumber leaves at 5°C in the light. ATP is not formed and energy dissipation in the form of heat is suppressed. Therefore, the electron flow to molecular oxygen would be greater than 5 mmol e− mol−1 Chl s−1. Moreover, under such conditions, components in the electron transport chain, including Fe-S centers in PSI, were probably reduced. These features indicate that, when cucumber leaves are chilled in the light, hydroxyl radicals can be produced by the Fenton reaction and cause damage to PSI.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...