ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Years
  • 1
    Publication Date: 2018-09-26
    Description: Shrouded bladed disks exhibit a nonlinear dynamic behavior due to the contact interfaces at shrouds between neighboring blades. As a result, reduced order models (ROMs) are mandatory to compute the response levels during the design phase for high cycle fatigue (HCF) life assessment. In this paper, two reduction strategies for shrouded bladed disk reduction are presented. Both approaches rely on: (i) the cyclic symmetry of the linear bladed disk with open shrouds to perform only single sector calculations, (ii) the Craig–Bampton (CB) method to reduce the number of physical degrees of freedom (dofs). The two approaches are applied to a set of test cases in order to evaluate and compare their accuracy and the associated computational effort. Although both approaches allow for generating accurate ROMs, it is found that the numerical efficiency of the two methods depends on the ratio of the number of nodes at the inter-sector interfaces over the number of inner nodes of the elementary sector model.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-03-23
    Description: Thin-walled gears, designed for aeronautical applications, have shown very rich dynamics that must be investigated in advance of the design phase. One of the signatures of their dynamics is coupling due to the meshing teeth which stand-alone gear models cannot capture. This paper aims to investigate the dynamics of thin-walled gears considering time-varying coupling due to the gear meshing. Each gear is modelled with lumped parameters according to a local rotating reference system and the coupling is modelled by a traveling meshing stiffness. The set of equations of motion is solved by the non-linear Method of Multiple-Time-Scales (MMTS). MMTS is a very powerful technique that is widely used to solve perturbation problems in many fields of mathematic and physics. In the analyzed numerical test case, the relevance of gear coupling is demonstrated as well as the capability of the MMTS to capture the fundamental features of the system dynamics. In this study the analytical methodology, which uses MMTS, allows for the calculation of the forced response of the system made of two meshing gears despite the presence of a parametric quantity, i.e., the mesh stiffness. The calculation is performed in the frequency domain using modal coordinates, which ensures a fast computation. The result is compared with time domain analysis for validation purposes.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...