ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
  • 1
    Publication Date: 2020-08-04
    Description: The alteration in skeletal muscle fiber is a critical factor affecting livestock meat quality traits and human metabolic diseases. Long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs with a length of more than 200 nucleotides. However, the mechanisms underlying the regulation of lncRNAs in skeletal muscle fibers remain elusive. To understand the genetic basis of lncRNA-regulated skeletal muscle fiber development, we performed a transcriptome analysis to identify the key lncRNAs affecting skeletal muscle fiber and meat quality traits on a pig model. We generated the lncRNA expression profiles of fast-twitch Biceps femoris (Bf) and slow-twitch Soleus (Sol) muscles and identified the differentially expressed (DE) lncRNAs using RNA-seq and performed bioinformatics analyses. This allowed us to identify 4581 lncRNA genes among six RNA libraries and 92 DE lncRNAs between Bf and Sol which are the key candidates for the conversion of skeletal muscle fiber types. Moreover, we detected the expression patterns of lncRNA MSTRG.42019 in different tissues and skeletal muscles of various development stages. In addition, we performed a correlation analyses between the expression of DE lncRNA MSTRG.42019 and meat quality traits. Notably, we found that DE lncRNA MSTRG.42019 was highly expressed in skeletal muscle and its expression was significantly higher in Sol than in Bf, with a positive correlation with the expression of Myosin heavy chain 7 (MYH7) (r = 0.6597, p = 0.0016) and a negative correlation with meat quality traits glycolytic potential (r = −0.5447, p = 0.0130), as well as drip loss (r = −0.5085, p = 0.0221). Moreover, we constructed the lncRNA MSTRG.42019–mRNAs regulatory network for a better understanding of a possible mechanism regulating skeletal muscle fiber formation. Our data provide the groundwork for studying the lncRNA regulatory mechanisms of skeletal muscle fiber conversion, and given the importance of skeletal muscle fiber types in muscle-related diseases, our data may provide insight into the treatment of muscular diseases in humans.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-29
    Description: Prox1 is involved in muscle fiber conversion, adult-onset obesity, and type 2 diabetes. However, information regarding porcine Prox1 and its relationship with meat quality traits is still unknown. In this study, we characterized the full-length cDNA and proximal promoter of two transcript variants of porcine Prox1. Moreover, Prox1 was expressed abundantly in the skeletal muscle and its expression was higher in the soleus muscle than that in the biceps femoris muscle. Its expression pattern in the high and low meat color (redness) value a* groups was similar to that of myoglobin and MyHC I, but opposed to that of MyHC IIB. Importantly, there was a significant positive correlation between Prox1 expression and meat color (redness) value a* (r = 0.3845, p = 0.0394), and a significant negative correlation between Prox1 expression and drip loss (r = −0.4204, p = 0.0232), as well as the ratio of MyHC IIB to MyHC I expression (r = −0.3871, p = 0.0380). In addition, we found that the polymorphisms of three closely linked SNPs in Prox1 promoter 1 were significantly associated with pH24h in a pig population. Taken together, our data provide valuable insights into the characteristics of porcine Prox1 and indicate that Prox1 is a promising candidate gene affecting meat quality traits.
    Electronic ISSN: 2076-2615
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-10-31
    Description: Plant roots play a significant role in plant growth by exploiting soil resources via the uptake of water and nutrients. Root traits such as fine root diameter, specific root length, specific root area, root angle, and root length density are considered useful traits for improving plant productivity under drought conditions. Therefore, understanding interactions between roots and their surrounding soil environment is important, which can be improved through root phenotyping. With the advancement in technologies, many tools have been developed for root phenotyping. Canopy temperature depression (CTD) has been considered a good technique for field phenotyping of crops under drought and is used to estimate crop yield as well as root traits in relation to drought tolerance. Both laboratory and field-based methods for phenotyping root traits have been developed including soil sampling, mini-rhizotron, rhizotrons, thermography and non-soil techniques. Recently, a non-invasive approach of X-ray computed tomography (CT) has provided a break-through to study the root architecture in three dimensions (3-D). This review summarizes methods for root phenotyping. On the basis of this review, it can be concluded that root traits are useful characters to be included in future breeding programs and for selecting better cultivars to increase crop yield under water-limited environments.
    Electronic ISSN: 2073-4395
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-16
    Description: The high hygroscopicity of salt aerosol particles makes the particles active in aerosol and cloud formations. Inland saline lakes are an important and dynamic source of salt aerosol. The salt particles can be mixed with mineral dust and transported over long distances. During transportation, these particles participate in atmospheric heterogeneous chemistry and further impact the climate and air quality on a global scale. Despite their importance and potential, relatively little research has been done on saline lake salt mixtures from atmospheric perspectives. In this study, we use experimental and model methods to evaluate the hygroscopic properties of saline lake brines, fresh salt aerosol particles, and aged salt aerosol particles. Both original samples and literature data are investigated. The original brine samples are collected from six salt lakes in Shanxi and Qinghai provinces in China. The ionic compositions of the brines are determined and the hygroscopicity measurements are performed on crystallized brines. The experimental results agree well with theoretical deliquescence relative humidity (DRH) values estimated by a thermodynamic model. The correlations between DRHs of different salt components and the correlations between DRHs and ionic concentrations are presented and discussed. Positive matrix factorization (PMF) analysis is performed on the ionic concentrations data and the hygroscopicity results, and the solutions are interpreted and discussed. The fresh and aged salt aerosol particles are analyzed in the same way as the brines, and the comparison shows that the aged salt aerosol particles completely alter their hygroscopic property, i.e., transferring from MgCl2− governed to NH4NO3− governed.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...