ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-06-01
    Description: Changes in the underlying conductivity around hypocenters are generally considered one of the promising mechanisms of seismo-electromagnetic anomaly generation. Parkinson vectors are indicators of high-conductivity materials and were utilized to remotely monitor conductivity changes during the MW 6.5 Jiuzhaigou earthquake (103.82°E, 33.20°N) on 8 August 2017. Three-component geomagnetic data recorded in 2017 at nine magnetic stations with epicenter distances of 63–770 km were utilized to compute the azimuths of the Parkinson vectors based on the magnetic transfer function. The monitoring and background distributions at each station were constructed by using the azimuths within a 15-day moving window and over the entire study period, respectively. The background distribution was subtracted from the monitoring distribution to mitigate the effects of underlying inhomogeneous electric conductivity structures. The differences obtained at nine stations were superimposed and the intersection of a seismo-conductivity anomaly was located about 70 km away from the epicenter about 17 days before the earthquake. The anomaly disappeared about 7 days before and remained insignificant after the earthquake. Analytical results suggested that the underlying conductivity close to the hypocenter changed before the Jiuzhaigou earthquake. These changes can be detected simultaneously by using multiple magnetometers located far from the epicenter. The disappearance of the seismo-conductivity anomaly after the earthquake sheds light on a promising candidate of the pre-earthquake anomalous phenomena.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-07
    Description: Broadband seismometers, ground-based Global Navigation Satellite Systems (GNSS), and magnetometers that were located within an epicentral distance of approximately 150 km consistently observed the novel anomalous behaviors of the common-mode ground vibrations approximately 5–10 days before the M6.6 Meinong earthquake in Taiwan. The common-mode ground vibrations with amplitudes near 0.1 m at frequencies ranging from 8 × 10−5 to 2 × 10−4 Hz were generated near the region close to the epicenter of the impending earthquake. The common-mode vibrations were consistently observed in seismic and GNSS data associated with five other earthquakes in four distinct areas. The results reveal that the common-mode vibrations could be a typical behavior before earthquakes. The causal mechanism of common-mode vibrations can be attributed to crustal resonance excitations before fault dislocations occur. Potential relationships with other pre-earthquake anomalies suggest that the common-mode vibrations could be ground motion before earthquakes, which was investigated for a significant length of time.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-09
    Description: On the Longmen Shan thrust belt (LMS) on the eastern margin of Tibet Plateau, the Mw7.9 Wenchuan earthquake occurred in 2008. As for the dynamic cause of the Wenchuan earthquake, many scholars have studied the rheological difference and terrain elevation difference on both sides of the fault. However, previous studies have simplified the LMS as a single listric-reverse fault. In fact, the LMS is composed of four faults with different dip angles in the shallow part, and the faults are Wenchuan-Maoxian fault (WMF), Yingxiu-Beichuan fault (YBF), Guanxian-Jiangyou fault (GJF) and Range Front Thrust (RFT) from west to east. However, the control of the branching structure of these faults on the distribution and accumulation of stress and strain during the seismogenic of the Wenchuan earthquake has not been discussed. In this paper, four viscoelastic finite element models with different fault numbers and combination structures are built to analyze the effect of fault branching structures on the stress distribution and accumulation during the seismogenic of Wenchuan earthquake, and we use geodetic data such as GPS and precise leveling data to constrain our models. At the same time, we also study the influence of the existence of the detachment layer, which is formed by the low-resistivity and low-velocity layer, between the upper and lower crust of the Bayan Har block and the change of its frontal edge position on the stress accumulation and distribution. The results show that the combinations of YBF and GJF is most conducive to the concentration of equivalent stress below the intersection of the two faults, and the accumulated stress on GJF is shallower than that on YBF, which means that more stress is transferred to the surface along GJF; and the existence of a detachment layer can effectively promote the accumulation of stress at the bottom of YBF and GJF, and the closer the frontal edge position of the detachment layer is to the LMS fault, the more favorable the stress accumulation is. Based on the magnitude of stress accumulation at the bottom of the intersection of YBF and GJF, we speculate that the frontal edge position of the detachment layer may cross YBF and expand eastward.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-08
    Description: Hydraulic properties of fault zones are important to understanding the pore pressure development and fault stability. In this work, we examined the relationship between water level changes caused by the 2008 Wenchuan Mw 7.9 earthquake and faults using four wells with the same lithology around the Three Gorges Dam, China. Two of the wells penetrating the fault damage zones recorded sustained water level changes, while the other two wells that are not penetrating any fault damage zones recorded transient water level changes. The phase shift and tidal factor calculated from water level, a proxy of permeability and storage coefficient, revealed that both the permeability and storage coefficient changed in the two wells penetrating the fault damage zones, while the other two wells not penetrating the fault damage zone did not show any change in permeability and storage coefficient. Thus, we tentatively suggest that faults may play an important controlling role on earthquake-induced hydrologic changes because the detrital or clogging components in the fractures may be more easily removed by seismic waves.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: Stress may induce apparent resistivity changes. Clarifying the deformation process of the source media is critical for determining the correlations between resistivity variations and earthquake occurrence. In this study, the stress state of a medium was analyzed by integrating GPS measurements, the spatiotemporal evolution of the load/unload response ratio (LURR), geochemical monitoring, and synchronous apparent resistivity changes preceding the 2020 Mw 6.0 Jiashi earthquake. The medium hosting the Kalpin Observatory underwent elastic deformation before 2019, and the synchronous decreases in the E–W and N–S apparent resistivities from 2015 can be attributed to N–S-dominated compressive stress. The microdamage stage occurred in 2019, with subsequent E–W apparent resistivity variation amplitudes that were ~0.4 Ωm higher than those in previous years. This difference is a result of microdamage to the medium owing to tensile stress during the seismogenic process. The spatiotemporal evolution of the LURR and gas seepage monitoring data also indicate that the medium was damaged prior to the earthquake. Variations in the apparent resistivity measured at the Kalpin Observatory indicate that the medium underwent elastic deformation, followed by microdamage, until stress triggered the earthquake.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...