ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
  • 1
    Publication Date: 2020-08-25
    Description: Fractional vegetation coverage (FVC) plays an important role in monitoring vegetation growth status and evaluating restoration efforts in ecological environments. In this study, FVC was calculated using a binary pixel model and analyzed in the Pisha Sandstone area of China, using MODIS-EVI data from 2000 to 2019. Topographic effects were analyzed from elevation, slope and aspect using a terrain niche index model. The results were as follows. (1) From 2000 to 2019, FVC in the Pisha Sandstone area of China gradually increased at a mean rate of 0.0074/a, and the growth status of vegetation gradually improved. (2) The spatial distribution of FVC steadily decreased from southeast to northwest. FVC was the lowest in bare parts of the Pisha Sandstone area, whereas those in the sand- and soil-covered parts were the middle and highest, respectively. (3) With increasing elevation, the inferior coverage area and terrain niche index increased, and inferior coverage distribution changed from non-dominant to dominant. Meanwhile, the low, medium and high coverage areas decreased, and their distributions changed from dominance to non-dominance. (4) With increasing slope, distributions of the inferior, medium and high coverage areas changed from dominant to non-dominant, while the low coverage area had a dominant distribution. (5) Analyses of aspect effects revealed that the inferior coverage area was the dominant distribution in shady slopes but was non-dominant in semi-shady, semi-sunny and sunny slopes. The low, medium and high coverage areas were non-dominant in shady slopes, but dominant in semi-shady, semi-sunny and sunny slopes.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-23
    Description: The performance of a 300 kW organic Rankine cycle (ORC) prototype was experimentally investigated for low-grade waste heat recovery in industry. The prototype employed a specially developed single-stage radial turbine that was integrated with a semi-hermetic three-phase asynchronous generator. R245fa was selected as the working fluid and hot water was adopted to imitate the low-grade waste heat source. Under approximately constant cooling source operating conditions, variations of the ORC performance with diverse operating parameters of the heat source (including temperature and volume flow rate) were evaluated. Results revealed that the gross generating efficiency and electric power output could be improved by using a higher heat source temperature and volume flow rate. In the present experimental research, the maximum electric power output of 301 kW was achieved when the heat source temperature was 121 °C. The corresponding turbine isentropic efficiency and gross generating efficiency were up to 88.6% and 9.4%, respectively. Furthermore, the gross generating efficiency accounted for 40% of the ideal Carnot efficiency. The maximum electric power output yielded the optimum gross generating efficiency.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...