ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-07-01
    Description: In this study, various mixing and evaporation modeling assumptions typically considered for large-eddy simulation (LES) of the well-established Engine Combustion Network (ECN) Spray A are explored. A coupling between LES and Lagrangian particle tracking (LPT) is employed to simulate liquid n-dodecane spray injection into hot inert gaseous environment, wherein Lagrangian droplets are introduced from a small cylindrical injection volume while larger length scales within the nozzle diameter are resolved. This LES/LPT approach involves various modeling assumptions concerning the unresolved near-nozzle region, droplet breakup, and LES subgrid scales (SGS) in which their impact on common spray metrics is usually left unexplored despite frequent utilization. Here, multi-parametric analysis is performed on the effects of (i) cylindrical injection volume dimensions, (ii) secondary breakup model, particularly Kelvin–Helmholtz Rayleigh–Taylor (KHRT) against a no-breakup model approach, and (iii) LES SGS models, particularly Smagorinsky and one-equation models against implicit LES. The analysis indicates the following findings: (i) global spray characteristics are sensitive to radial dimension of the cylindrical injection volume, (ii) the no-breakup model approach performs equally well, in terms of spray penetration and mixture formation, compared with KHRT, and (iii) the no-breakup model is generally insensitive to the chosen SGS model for the utilized grid resolution.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-28
    Description: The multiplicity of targets of the 5G and further future technologies, set by the modern societies and industry, lacks the establishment of design methods for the highly multidisciplinary application of wireless platforms for small cells. Constraints are set by the overall energy concept, structural safety and sustainability. Various Smart poles and Light poles exist but it is challenging to define the design drivers especially for a composite load-carrying structure. In this study, the design drivers of a composite 5G smart pole are determined and the connecting design between finite element modelling (FEM), signal penetration and computational fluid dynamics (CFD) for thermal analysis are reported as an interdisciplinary process. The results emphasize the significant effects of thermal loading on the material selection. The physical architecture, including various cutouts, is manipulated by the needs of the mmW radios, structural safety and the societal preferences of sustainable city planning, i.e., heat management and aesthetic reasons. Finally, the paint thickness and paint type must be optimized due to radome-integrated radios. In the future, sustainability regulations and realized business models will define the cost-structure and the response by customers.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...