ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-10-22
    Description: The sea lamprey (Petromyzon marinus) is one of few vertebrate species known to reproducibly eliminate large fractions of its genome during normal embryonic development. This germline-specific DNA is lost in the form of large fragments, including entire chromosomes, and available evidence suggests that DNA elimination acts as a permanent silencing mechanism that prevents the somatic expression of a specific subset of “germline” genes. However, reconstruction of eliminated regions has proven to be challenging due to the complexity of the lamprey karyotype. We applied an integrative approach aimed at further characterization of the large-scale structure of eliminated segments, including: (1) in silico identification of germline-enriched repeats; (2) mapping the chromosomal location of specific repetitive sequences in germline metaphases; and (3) 3D DNA/DNA-hybridization to embryonic lagging anaphases, which permitted us to both verify the specificity of elements to physically eliminated chromosomes and characterize the subcellular organization of these elements during elimination. This approach resulted in the discovery of several repetitive elements that are found exclusively on the eliminated chromosomes, which subsequently permitted the identification of 12 individual chromosomes that are programmatically eliminated during early embryogenesis. The fidelity and specificity of these highly abundant sequences, their distinctive patterning in eliminated chromosomes, and subcellular localization in elimination anaphases suggest that these sequences might contribute to the specific targeting of chromosomes for elimination or possibly in molecular interactions that mediate their decelerated poleward movement in chromosome elimination anaphases, isolation into micronuclei and eventual degradation.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-19
    Description: Heterochromatin is identified as a potential factor driving diversification of species. To understand the magnitude of heterochromatin variation within the Anopheles gambiae complex of malaria mosquitoes, we analyzed metaphase chromosomes in An. arabiensis, An. coluzzii, An. gambiae, An. merus, and An. quadriannulatus. Using fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA), a highly repetitive fraction of DNA, and heterochromatic Bacterial Artificial Chromosome (BAC) clones, we established the correspondence of pericentric heterochromatin between the metaphase and polytene X chromosomes of An. gambiae. We then developed chromosome idiograms and demonstrated that the X chromosomes exhibit qualitative differences in their pattern of heterochromatic bands and position of satellite DNA (satDNA) repeats among the sibling species with postzygotic isolation, An. arabiensis, An. merus, An. quadriannulatus, and An. coluzzii or An. gambiae. The identified differences in the size and structure of the X chromosome heterochromatin point to a possible role of repetitive DNA in speciation of mosquitoes. We found that An. coluzzii and An. gambiae, incipient species with prezygotic isolation, share variations in the relative positions of the satDNA repeats and the proximal heterochromatin band on the X chromosomes. This previously unknown genetic polymorphism in malaria mosquitoes may be caused by a differential amplification of DNA repeats or an inversion in the sex chromosome heterochromatin.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...