ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-09-10
    Description: In our previous investigation, delphinidin, one of the most abundant anthocyanins found in vegetables and berry fruits, had been shown to inhibit osteoclasts and prevent bone loss in mouse models of osteoporosis. In the present study, we investigated whether a delphinidin glycoside-enriched maqui berry extract (MBE, Delphinol®) exhibits beneficial effects on bone metabolism both in vitro and in vivo. MBE stimulated the osteoblastic differentiation of MC3T3-E1 cells, as indicated by enhanced mineralized nodule formation, and increased alkaline phosphatase activity, through the upregulation of bone morphogenetic protein 2 (Bmp2), runt-related transcription factor 2 (Runx2), Osterix (Osx), osteocalcin (Ocn), and matrix extracellular phosphoglycoprotein (Mepe) mRNA expression. Immunostaining and immunoprecipitation assays demonstrated that MBE suppressed NF-κB transnucleation through acting as a superoxide anion/peroxynitrite scavenger in MC3T3-E1 cells. Simultaneously, MBE inhibited both osteoclastogenesis in primary bone marrow macrophages and pit formation by maturated osteoclasts on dentine slices. Microcomputed tomography (micro-CT) and bone histomorphometry analyses of femurs demonstrated that the daily ingestion of MBE significantly increased BV/TV (ratio of bone volume to tissue volume), Tb.Th (trabecular thickness), Tb.N (trabecular number), N.Nd/N.Tm (node to terminus ratio), OV/TV (ratio of osteoid volume to tissue volume), BFR/TV (bone formation rate per tissue volume), and significantly decreased Tb.Sp (trabecular separation), ES/BS (ratio of eroded surface to bone surface) and N.Oc/BS (number of osteoclast per unit of bone surface), compared to vehicle controls in osteopenic mouse models. These findings suggest that MBE can be a promising natural agent for the prevention of bone loss in osteopenic conditions by not only inhibiting bone resorption, but also stimulating bone formation.
    Electronic ISSN: 2076-3921
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-20
    Description: Paired box protein 5 (Pax5) is a crucial transcription factor responsible for B-cell lineage specification and commitment. In this study, we identified a negative role of Pax5 in osteoclastogenesis. The expression of Pax5 was time-dependently downregulated by receptor activator of nuclear factor kappa B (RANK) ligand (RANKL) stimulation in osteoclastogenesis. Osteoclast (OC) differentiation and bone resorption were inhibited (68.9% and 48% reductions, respectively) by forced expression of Pax5 in OC lineage cells. Pax5 led to the induction of antiosteoclastogenic factors through downregulation of B lymphocyte-induced maturation protein 1 (Blimp1). To examine the negative role of Pax5 in vivo, we generated Pax5 transgenic (Pax5Tg) mice expressing the human Pax5 transgene under the control of the tartrate-resistant acid phosphatase (TRAP) promoter, which is expressed mainly in OC lineage cells. OC differentiation and bone resorption were inhibited (54.2–76.9% and 24.0–26.2% reductions, respectively) in Pax5Tg mice, thereby contributing to the osteopetrotic-like bone phenotype characterized by increased bone mineral density (13.0–13.6% higher), trabecular bone volume fraction (32.5–38.1% higher), trabecular thickness (8.4–9.0% higher), and trabecular number (25.5–26.7% higher) and decreased trabecular spacing (9.3–10.4% lower) compared to wild-type control mice. Furthermore, the number of OCs was decreased (48.8–65.3% reduction) in Pax5Tg mice. These findings indicate that Pax5 plays a negative role in OC lineage specification and commitment through Blimp1 downregulation. Thus, our data suggest that the Pax5–Blimp1 axis is crucial for the regulation of RANKL-induced osteoclastogenesis.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...