ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2021-10-25
    Description: We performed the investigation of the polarization-sensitive photocurrent generated in silver-palladium metal-semiconductor nanocomposite films under irradiation with nanosecond laser pulses at the wavelength of 2600 nm. It is shown that in both the transverse and the longitudinal configuration, the surface photogalvanic (SPGE) and photon drag effects (PDE) contribute to the observed photocurrent. However, the temporal profile of the transverse photocurrent pulse is monopolar at any polarization and angle of incidence, while the temporal profile of the longitudinal photocurrent pulse depends on the polarization of the excitation beam. Specifically, the irradiation of the film with the s-polarized excitation beam produces a monopolar photoresponse, while at p-polarized excitation, the photoresponse is bipolar, having a short front and long tail. Obtained experimental results are in agreement with the developed phenomenological theory, which describes transverse and longitudinal photocurrents due to SPGE and PDE in terms of relevant second-order nonlinear susceptibilities and allows us to obtain their dependences on the angle of incidence and polarization of the excitation laser beam. The pronounced dependence of the photocurrent on the angle of incidence and polarization of the excitation beam opens avenues toward the development of polarization- and position-sensitive detectors for industrial and space applications.
    Electronic ISSN: 2079-4991
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-24
    Description: Nanocomposites, i.e., materials comprising nano-sized entities embedded in a host matrix, can have tailored optical properties with applications in diverse fields such as photovoltaics, bio-sensing, and nonlinear optics. Effective medium approaches such as Maxwell-Garnett and Bruggemann theories, which are conventionally used for modeling the optical properties of nanocomposites, have limitations in terms of the shapes, volume fill fractions, sizes, and types of the nanoentities embedded in the host medium. We demonstrate that grating theory, in particular the Fourier Eigenmode Method, offers a viable alternative. The proposed technique based on grating theory presents nanocomposites as periodic structures composed of unit-cells containing a large and random collection of nanoentities. This approach allows us to include the effects of the finite wavelength of light and calculate the nanocomposite characteristics regardless of the morphology and volume fill fraction of the nano-inclusions. We demonstrate the performance of our approach by calculating the birefringence of porous silicon, linear absorption spectra of silver nanospheres arranged on a glass substrate, and nonlinear absorption spectra for a layer of silver nanorods embedded in a host polymer material having Kerr-type nonlinearity. The developed approach can also be applied to quasi-periodic structures with deterministic randomness or metasurfaces containing a large collection of elements with random arrangements inside their unit cells.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...