ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-01-30
    Description: Metabolic disorders of the mother adversely affect early embryo development, causing changes in maternal metabolism and consequent alterations in the embryo environment in the uterus. The goal of this study was to analyse the biochemical profiles of embryonic fluids and blood plasma of rabbits with and without insulin-dependent diabetes mellitus (DT1), to identify metabolic changes associated with maternal diabetes mellitus in early pregnancy. Insulin-dependent diabetes was induced by alloxan treatment in female rabbits 10 days before mating. On day 6 post-coitum, plasma and blastocoel fluid (BF) were analysed by ultrahigh performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) (Metabolon Inc. Durham, NC, USA). Metabolic datasets comprised a total of 284 and 597 compounds of known identity in BF and plasma, respectively. Diabetes mellitus had profound effects on maternal and embryonic metabolic profiles, with almost half of the metabolites changed. As predicted, we observed an increase in glucose and a decrease in 1,5-anhydroglucitol in diabetic plasma samples. In plasma, fructose, mannose, and sorbitol were elevated in the diabetic group, which may be a way of dealing with excess glucose. In BF, metabolites of the pentose metabolism were especially increased, indicating the need for ribose-based compounds relevant to DNA and RNA metabolism at this very early stage of embryo development. Other changes were more consistent between BF and plasma. Both displayed elevated acylcarnitines, body3-hydroxybutyrate, and multiple compounds within the branched chain amino acid metabolism pathway, suggesting that lipid beta-oxidation is occurring at elevated levels in the diabetic group. This study demonstrates that maternal and embryonic metabolism are closely related. Maternal diabetes mellitus profoundly alters the metabolic profile of the preimplantation embryo with changes in all subclasses of metabolites.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-31
    Description: Advanced maternal age is associated with adverse pregnancy outcomes and the decline of female fertility in mammals. A potential reason for reduced fertility is metabolic changes due to protein modifications by advanced glycation end products. To elucidate the aging process in female reproduction, we analysed a key enzyme for detoxification of reactive dicarbonyls, the glyoxalase 1 (GLO1), in reproductive organs and blastocysts of young and old rabbits at the preimplantation stage. At day 6 post coitum, uterine, oviductal, ovarian tissue and blastocysts from young (16–20 weeks) and old rabbits (〉108 weeks) were characterised for GLO1 expression. GLO1 amounts, enzymatic activity and localisation were quantified by qPCR, Simple Western, activity assay and immunohistochemistry. The GLO1 enzyme was present and active in all reproductive tract organs in a cell-type-specific pattern. Ovarian follicle and uterine epithelial cells expressed GLO1 to a high extent. In tertiary follicles, GLO1 expression increased, whereas it decreased in the endometrium of old rabbits at day 6 of pregnancy. In blastocysts of old animals, GLO1 expression remained unchanged. In early pregnancy, advanced maternal age leads to modified GLO1 expression in ovarian follicles and the endometrium, indicating an altered metabolic stress response at the preimplantation stage in older females.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...