ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-09-25
    Description: Polypropylene (PP) fibers are heavily used in disposable nonwovens fabrics because of their desirable properties and low-cost, but they are not biodegradable. With the goal of reducing non-biodegradable plastic waste in the environment, the primary aim of this study was to produce fibers with reduced content of PP for disposable fabrics by incorporating soy flour, a bio-based renewable material. An optimum processing temperature of 190 °C was established, and thin fibers with a diameter under 60 µm were successfully melt-spun. Inclusion of compatibilized soy (SFM) at 30 wt% resulted in fibers with a tensile modulus of 674 ± 245 MPa and a yield strength of 18 ± 4 MPa. At 15 wt% SFM, fiber tensile modulus and yield strength were 914 ± 164 and 29 ± 3, respectively. Although lower than those of neat PP fibers (1224 ± 136 MPa and 37 ± 3 MPa), these SFM/PP fiber properties are suitable for nonwoven applications. Additionally, partial presence of soy particulates on fiber surface imparted enhanced water absorption and colorability properties to the fibers while imparting the fibers the feel of natural fibers.Although more difficult to produce, soy-PP fibers possessed similar properties as compared to those of than soy-PE fibers reported in earlier studies.
    Electronic ISSN: 2079-6439
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-02
    Description: With shrinking size of electronic devices, increasing performance and accompanying heat dissipation, there is a need for efficient removal of this heat through packaging materials. Polymer materials are attractive packaging materials given their low density and electrical insulating properties, but they lack sufficient thermal conductivity that inhibits heat transfer rate. Hexagonal boron nitride (BN) possesses excellent thermal conductivity and is also electrically insulating, therefore BN-filled polymer composites were investigated in this study. Results showed successful continuous extrusion of BN-filled linear low-density polyethylene through micro-textured dies that is a scalable manufacturing process. Through-thickness thermal conductivity measurements established that 30 vol% BN content led to an over 500% increase in thermal conductivity over that of pure polymer. Textured film surface provided about a 50% increase in surface area when compared with non-textured films. This combination of increased surface area and enhanced thermal conductivity of BN-filled textured films indicates their potential application for improved convective thermal transport.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...