ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (1)
  • 1
    Publication Date: 2019-07-29
    Description: Aluminum-phosphate-sulfates (APS) of the alunite supergroup occur in igneous rocks within zones of advanced argillic and silicic alteration in porphyry and epithermal ore environments. In this study we report on the presence of woodhouseite-rich APS in ash from the 27 September 2014 hydrothermal eruption of Ontake volcano. Scanning electron microscope coupled with energy dispersive X-ray spectrometer (SEM-EDS) and field emission (FE)-SEM-EDS observations show two types of occurrence of woodhouseite: (a) as cores within chemically zoned alunite-APS crystals (Zoned-alunite-woodhouseite-APS), and (b) as a coherent single-phase mineral in micro-veinlets intergrown with similar micro-veinlets of silica minerals (Micro-wormy-vein woodhouseite-APS). The genetic environment of APS minerals at Ontake volcano is that of a highly acidic hydrothermal system existing beneath the volcano summit, formed by condensation in magmatic steam and/or ground waters of sulfur-rich magmatic volatiles exsolved from the magma chamber beneath Mt. Ontake. Under these conditions, an advanced argillic alteration assemblage forms, which is composed of silica, pyrophyllite, alunite and kaolinite/dickite, plus APS, among other minerals. The discovery of woodhouseite in the volcanic ash of the Ontake 2014 hydrothermal eruption represents the first reported presence of APS within an active volcano. Other volcanoes in Japan and elsewhere with similar phreatic eruptions ejecting altered ash fragments will likely contain APS minerals derived from magmatic-hydrothermal systems within the subvolcanic environment. The presence of APS minerals within the advanced argillic zone below the summit vent of Ontake volcano, together with the prior documentation of phyllic and potassically altered ash fragments, provides evidence for the existence within an active volcano in Japan of an alteration column comparable to that of porphyry copper systems globally.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...