ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (3)
  • 1
    Publication Date: 2020-03-23
    Description: Water infiltration and unsaturated flow through heterogeneous soil control the distribution of soil moisture in the vadose zone and the dynamics of groundwater recharge, providing the link between climate, biogeochemical soil processes and vegetation dynamics. Infiltration into dry soil is hydrodynamically unstable, leading to preferential flow through narrow wet regions (fingers). In this paper we use numerical simulation to study the interplay between fingering instabilities and soil heterogeneity during water infiltration. We consider soil with heterogeneous intrinsic permeability. Permeabilities are random, with point Gaussian statistics, and vary smoothly in space due to spatial correlation. The key research question is whether the presence of moderate or strong heterogeneity overwhelms the fingering instability, recovering the simple stable displacement patterns predicted by most simplified model of infiltration currently used in hydrological models from the Darcy to the basin scales. We perform detailed simulations of constant-rate infiltration into soils with isotropic and anisotropic intrinsic permeability fields. Our results demonstrate that soil heterogeneity does not suppress fingering instabilities, but it rather enhances its effect of preferential flow and channeling. Fingering patterns strongly depend on soil structure, in particular the correlation length and anisotropy of the permeability field. While the finger size and flow dynamics are only slightly controlled by correlation length in isotropic fields, layering leads to significant finger meandering and bulging, changing arrival times and wetting efficiencies. Fingering and soil heterogeneity need to be considered when upscaling the constitutive relationships of multiphase flow in porous media (relative permeability and water retention curve) from the finger to field and basin scales. While relative permeabilities remain unchanged upon upscaling for stable displacements, the inefficient wetting due to fingering leads to relative permeabilities at the field scale that are significantly different from those at the Darcy scale. These effective relative permeability functions also depend, although less strongly, on heterogeneity and soil structure.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-24
    Description: Modeling water flow and solute transport in the vadose zone is essential to understanding the fate of soil pollutants and their travel times towards groundwater bodies. It also helps design better irrigation strategies to control solute concentrations and fluxes in semiarid and arid regions. Heterogeneity, soil texture and wetting front instabilities determine the flow patterns and solute transport mechanisms in dry soils. When water is already present in the soil, the flow of an infiltration pulse depends on the spatial distribution of soil water and on its mobility. We present numerical simulations of passive solute transport during unstable infiltration of water into sandy soils that are prone to wetting front instability. We study the impact of the initial soil state, in terms of spatial distribution of water content, on the infiltration of a solute-rich water pulse. We generate random fields of initial moisture content with spatial structure, through multigaussian fields with prescribed correlation lengths. We characterize the patterns of water flow and solute transport, as well as the mass fluxes through the soil column. Our results indicate a strong interplay between preferential flow and channeling due to fingering and the spatial distribution of soil water at the beginning of infiltration. Fingering and initial water saturation fields have a strong effect on solute diffusion and dilution into the ambient water during infiltration, suggesting an effective separation between mobile and inmobile transport domains that are controlled by the preferential flow paths due to fingering.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-04-26
    Description: We analyze the effect that the geometry of the Effective Propped Volume (EPV) has on the economic performance of hydrofractured multistage shale gas wells. We study the sensitivity of gas production to the EPV’s geometry and we compare it with the sensitivity to other parameters whose relevance in the production of shale gas is well known: porosity, kerogen content and permeability induced in the Stimulated Recovery Volume (SRV). To understand these sensitivities, we develop a high-fidelity 3D numerical model of shale gas flow that allows determining both the Estimated Ultimate Recovery (EUR) of gas as well as analyzing the decline curves of gas production (DCA). We find that the geometry of the EPV plays an important role in the economic performance and gas production of shale wells. The relative contribution of EPV geometry is comparable to that of induced permeability of the SRV or formation porosity. Our results may lead to interesting technological developments in the oild and gas industry that improve economic efficiency in shale gas production.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...