ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2021-04-08
    Description: The photophysical and photochemical properties of antipyretic drug – paracetamol (PAR) and its two analogs with different substituents (acetanilide (ACT) and N-ethylaniline (NEA)) in 14 solvents of different polarity were investigated by the use of steady–state spectroscopic technique and quantum–chemical calculations. As expected, the results show that the spectroscopic behavior of PAR, ACT, and NEA is highly dependent on the nature of the solute–solvent interactions (non-specific (dipole-dipole) and specific (hydrogen bonding)). To characterize these interactions, the multiparameter regression analysis proposed by Catalán was used. In order to obtain a deeper insight into the electronic and optical properties of the studied molecules, the difference of the dipole moments of a molecule in the ground and excited state were determined using the theory proposed by Lippert, Mataga, McRae, Bakhshiev, Bilot, and Kawski. Additionally, the influence of the solute polarizability on the determined dipole moments was discussed. The results of the solvatochromic studies were related to the observations of the release kinetics of PAR, ACT, and NEA from polyurethane hydrogels. The release kinetics was analyzed using the Korsmayer-Peppas and Hopfenberg models. Finally, the influence of the functional groups of the investigated compounds on the release time from the hydrogel matrix was analyzed.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: The nature and mechanisms of interaction between two selected methyl benzoate derivatives (methyl o-methoxy p-methylaminobenzoate–I and methyl o-hydroxy p-methylaminobenzoate–II) and model transport protein bovine serum albumin (BSA) was studied using steady-state and time-resolved spectroscopic techniques. In order to understand the role of Trp residue of BSA in the I-BSA and II-BSA interaction, the effect of free Trp amino acid on the both emission modes (LE–locally excited (I and II) and ESIPT–excited state intramolecular proton transfer (II)) was investigated as well. Experimental results show that the investigated interactions (with both BSA and Trp) are mostly conditioned by the ground and excited state complex formation processes. Both molecules form stable complexes with BSA and Trp (with 1:1 stoichiometry) in the ground and excited states. The binding constants were in the order of 104 M−1. The absorption- and fluorescence-titration experiments along with the time-resolved fluorescence measurements show that the binding of the I and II causes fluorescence quenching of BSA through the static mechanism, revealing a 1:1 interaction. The magnitude and the sign of the thermodynamic parameters, ΔH, ΔS, and ΔG, determined from van’t Hoff relationship, confirm the predominance of the hydrogen-bonding interactions for the binding phenomenon. To improve and complete knowledge of methyl benzoate derivative-protein interactions in relation to supramolecular solvation dynamics, the time-dependent fluorescence Stokes’ shifts, represented by the normalized spectral response function c(t), was studied. Our studies reveal that the solvation dynamics that occurs in subpicosecond time scale in neat solvents of different polarities is slowed down significantly when the organic molecule is transferred to BSA cavity.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...