ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (5)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-04-11
    Description: Although not readily accessible yet to many community and hospital pharmacists, fuse deposition modelling (FDM) is a 3D printing technique that can be used to create a 3D pharmaceutical dosage form by employing drug loaded filaments extruded via a nozzle, melted and deposited layer by layer. FDM requires printable filaments, which are commonly manufactured by hot melt extrusion, and identifying a suitable extrudable drug-excipient mixture can sometimes be challenging. We propose here the use of passive diffusion as an accessible loading method for filaments that can be printed using FDM technology to allow for the fabrication of oral personalised medicines in clinical settings. Utilising Hansen Solubility Parameters (HSP) and the concept of HSP distances (Ra) between drug, solvent, and filament, we have developed a facile pre-screening tool for the selection of the optimal combination that can provide a high drug loading (a high solvent-drug Ra, 〉10, and an intermediate solvent–filament Ra value, ~10). We have identified that other parameters such as surface roughness and stiffness also play a key role in enhancing passive diffusion of the drug into the filaments. A predictive model for drug loading was developed based on Support Vector Machine (SVM) regression and indicated a strong correlation between both Ra and filament stiffness and the diffusion capacity of a model BCS Class II drug, nifedipine (NFD), into the filaments. A drug loading, close to 3% w/w, was achieved. 3D printed tablets prepared using a PVA-derived filament (Hydrosupport, 3D Fuel) showed promising characteristics in terms of dissolution (with a sustained release over 24 h) and predicted chemical stability (〉3 years at 25 °C/60% relative humidity), similar to commercially available NFD oral dosage forms. We believe FDM coupled with passive diffusion could be implemented easily in clinical settings for the manufacture of tailored personalised medicines, which can be stored over long periods of time (similar to industrially manufactured solid dosage forms).
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-08
    Description: When developing an amorphous solid dispersion (ASD), a prudent choice of polymer is critical to several aspects of ASD performance including: processability, solid state stability and dissolution rate. However, there is little guidance available to formulators to aid judicious polymer selection and a “trial and error” approach is often taken. This study aims to facilitate rational polymer selection and formulation design by generating ASDs using a range of poly-vinyl polymers and ketoprofen as a model active pharmaceutical ingredient (API) and evaluating several aspects of their performance. The molecular weight of the polymer and the ratio of vinyl pyrrolidone to vinyl acetate in the polymer were found to influence the relative humidity at which the relative humidity induced glass transition occurred, as well as the extent of ketoprofen supersaturation achieved during dynamic solubility testing. Interestingly, ASD tablets containing polymers with the vinyl pyrrolidone functional group exhibited higher tensile strengths than those without. This points towards the binder functionality of vinyl pyrrolidone. In conclusion, the physicochemical properties of poly-vinyl polymers greatly influence ketoprofen ASD performance and due regard should be paid to these properties in order to develop an ASD with the desired attributes.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-01
    Description: Amphotericin B possesses high activity against Candida spp. with low risk of resistance. However, Amphotericin B’s high molecular weight compared to other antifungal drugs, such as miconazole and clotrimazole, and poor water solubility hampers its efficacy at the physiological conditions of the oropharyngeal cavity (saliva pH, limited volume for dissolution) and thereby limits its clinical use in oropharyngeal candidiasis. We have prepared fast-dissolving orodispersible films with high loading (1% w/w) using solvent casting that enables amphotericin B to remain solubilised in saliva in equilibrium between the monomeric and dimeric states, and able to produce a local antifungal effect. Optimisation of the amphotericin B-loaded orodispersible films was achieved by quality by design studies combining dextran and/or maltodextrin as dextrose-derived-polymer film formers with cellulose-derived film formers (hydroxypropylmethyl/hydroxypropyl cellulose in a 1:4 weight ratio), sorbitol for taste masking, microcrystalline cellulose (Avicel 200) or microcrystalline cellulose-carboxymethylcellulose sodium (Avicel CL-611) for enhancing the mechanical strength of the film, and polyethylene glycol 400 and glycerol (1:1 w/w) as plasticizers. The optimised amphotericin B orodispersible films (containing 1% AmB, 25% dextran, 25% maltodextrin, 5% sorbitol, 10% Avicel 200, 10% polyethylene glycol 400, 10% glycerol, 3% hydroxypropylmethyl cellulose acetate succinate, 12% hydroxypropyl cellulose) possessed a fast disintegration time (60 ± 3 s), quick release in artificial saliva (〉80% in 10 min), high burst strength (2190 mN mm) and high efficacy against several Candida spp. (C. albicans, C. parapsilosis and C. krusei) (〉15 mm inhibition halo). Amphotericin B orodispersible films are stable for two weeks at room temperature (25 °C) and up to 1 year in the fridge. Although further toxicological and in vivo efficacy studies are required, this novel Amphotericin B orodispersible films is a promising, physicochemically stable formulation with potential wide application in clinical practice, especially for immunocompromised patients suffering from oropharyngeal candidiasis.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-17
    Description: To assess the difference in the fate of the antibiotic colistin (COLI) after its pulmonary delivery as a powder or a solution, we developed a COLI powder and evaluated the COLI pharmacokinetic properties in rats after pulmonary administration of the powder or the solution. The amorphous COLI powder prepared by spray drying was characterized by a mass median aerodynamic diameter and fine particle fraction of 2.68 ± 0.07 µm and 59.5 ± 5.4%, respectively, when emitted from a Handihaler®. After intratracheal administration, the average pulmonary epithelial lining fluid (ELF): plasma area under the concentration versus time curves (AUC) ratios were 570 and 95 for the COLI solution and powder, respectively. However, the same COLI plasma concentration profiles were obtained with the two formulations. According to our pharmacokinetic model, this difference in ELF COLI concentration could be due to faster systemic absorption of COLI after the powder inhalation than for the solution. In addition, the COLI apparent permeability (Papp) across a Calu-3 epithelium model increased 10-fold when its concentration changed from 100 to 4000 mg/L. Based on this last result, we propose that the difference observed in vivo between the COLI solution and powder could be due to a high local ELF COLI concentration being obtained at the site where the dry particles impact the lung. This high local COLI concentration can lead to a local increase in COLI Papp, which is associated with a high concentration gradient and could produce a high local transfer of COLI across the epithelium and a consequent increase in the overall absorption rate of COLI.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-20
    Description: The aim of this study was to investigate the use of a three-fluid atomising nozzle in a lab-scale spray dryer for the production of dry powders intended for pulmonary delivery. Powders were composed of salbutamol sulphate and theophylline in different weight ratios. The three-fluid nozzle technology enabled powders containing a high theophylline content to be obtained, overcoming the problems associated with its relatively low solubility, by pumping two separate feed solutions (containing the two different active pharmaceutical ingredients (APIs)) into the spray dryer via two separate nozzle channels at different feed rates. The final spray-dried products were characterized in terms of morphology, solid-state properties and aerosolization performance, and were compared with an equivalent formulation prepared using a standard two-fluid atomising nozzle. Results confirmed that most of the powders made using the three-fluid atomising nozzle met the required standards for a dry powder inhaler formulation in terms of physical characteristics; however, aerosolization characteristics require improvement if the powders are to be considered suitable for pulmonary delivery.
    Electronic ISSN: 1999-4923
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...