ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (1)
Collection
Publisher
  • Molecular Diversity Preservation International  (1)
  • Wiley  (2)
Years
  • 1
    Publication Date: 2020-11-02
    Description: In light of an upcoming series of missions beyond low Earth orbit (LEO) through NASA’s Artemis program and the potential establishment of bases on the Moon and Mars, the effects of the deep space environment on biology need to be examined and protective countermeasures need to be developed. Even though many biological experiments have been performed in space since the 1960s, most of them have occurred in LEO and for only short periods of time. These LEO missions have studied many biological phenomena in a variety of model organisms, as well as utilized a broad range of technologies. Given the constraints of the deep space environment, however, future deep space biological missions will be limited to microbial organisms using miniaturized technologies. Small satellites like CubeSats are capable of querying relevant space environments using novel instruments and biosensors. CubeSats also provide a low-cost alternative to more complex and larger missions, and require minimal crew support, if any. Several have been deployed in LEO, but the next iteration of biological CubeSats will go farther. BioSentinel will be the first interplanetary CubeSat and the first biological study NASA has sent beyond Earth’s magnetosphere in 50 years. BioSentinel is an autonomous free-flyer platform able to support biology and to investigate the effects of radiation on a model organism in interplanetary deep space. The BioSensor payload contained within the free-flyer is also an adaptable instrument that can perform biologically relevant measurements with different microorganisms and in multiple space environments, including the ISS, lunar gateway, and on the surface of the Moon. Nanosatellites like BioSentinel can be used to study the effects of both reduced gravity and space radiation and can house different organisms or biosensors to answer specific scientific questions. Utilizing these biosensors will allow us to better understand the effects of the space environment on biology so humanity may return safely to deep space and venture farther than ever before.
    Electronic ISSN: 2504-3900
    Topics: Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...