ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-01-02
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-24
    Description: Forest ecosystems are undergoing unprecedented changes in environmental conditions due to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and the subsequent climate change are affecting forest functions at different scales, from physiology and growth of individual trees to cycling of nutrients. This review summarizes the present knowledge regarding the impact of global change on forest functioning not only with respect to climate change, which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions among them. The carbon dioxide (CO2) fertilization effect on tree growth is expected to be constrained by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing water deficit, which interact in a complex way. At the community level, responses to global change are modified by species interactions that may lead to competition for resources and/or relaxation due to facilitation and resource partitioning processes. Thus, some species mixtures can be more resistant to drought than their respective pure forests, albeit it depends on environmental conditions and species’ functional traits. Climate change and nitrogen deposition have additional impacts on litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees’ adaptability to stress or decomposition rates. As stoichiometry of different ecosystem components are also influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment of traditional forest management is needed in order to cope with global change. Proposed silvicultural systems emphasize the key role of diversity to assure multiple ecosystem services, and special attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying mechanisms governing the relationships between diversity and different ecosystems functions, such as productivity and stability, is provided.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-16
    Description: The increased frequency and intensity of warming-induced droughts have triggered dieback episodes affecting many forest types and tree species worldwide. Tree plantations are not exempt as they can be more vulnerable to drought than natural forests because of their lower structural and genetic diversity. Therefore, disentangling the physiological mechanisms leading to growth decline and tree mortality can provide tools to adapt forest management to climate change. In this study, we investigated a Pinus nigra Arn. plantation situated in northern Spain, in which some trees showed canopy dieback and radial-growth decline. We analyzed how radial growth and its responses to drought events differed between non-declining (ND) and declining (D) trees showing low and high canopy defoliation, respectively, in combination with carbon (δ13C) and oxygen (δ18O) isotope ratios in tree rings. The radial growth of P. nigra was constrained by water availability during the growing season and the previous autumn. The radial growth of D trees showed higher sensitivity to drought than ND trees. This fact is in accordance with the lower drought resilience and negative growth trends observed in D trees. Both tree classes differed in their growth from 2012 onwards, with D trees showing a reduced growth compared to ND trees. The positive δ13C-δ18O relationship together with the uncoupling between growth and intrinsic water-use efficiency suggest that D trees have less tight stomatal regulation than ND trees, which could involve a high risk of xylem embolism in the former class. Our results suggest that different water use strategies between coexisting ND and D trees were behind the differences in growth patterns and point to hydraulic failure as a possible mechanism triggering dieback and growth decline.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-31
    Description: Forest dieback and mortality episodes triggered by droughts are receiving increasing attention due to the projected increases in these extreme climate events. However, the role played by nutrient impairment in dieback is understudied, despite interactions among carbon-water balances and nutrition. Here, we followed a comparative analysis of long-term growth, intrinsic water-use efficiency (iWUE), oxygen isotopes (δ18O) and wood-nutrient composition patterns between living (L) and dead (D) trees of a Nothofagus dombeyi population, showing dieback in Argentina. The onset of the growth decline of D trees occurred ca. 40 years before death. These trees showed higher iWUE, pointing to higher drought stress. Their lower δ18O values, together with the uncoupling between δ18O and leaf-level processes, suggested a deeper source of water uptake for this vigor class. D trees showed a poorer nutritional status than L trees that likely amplified the dieback. This was supported by numerous positive associations of P- and K-concentrations in wood and related ratios with iWUE, δ18O and tree growth. Therefore, drought-related nutrient deterioration can significantly contribute to dieback and be an early warning signal of impending tree death.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...