ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (2)
Collection
Years
  • 1
    Publication Date: 2020-05-07
    Description: As a notable illustration of totipotency and plant regeneration, somatic embryogenesis (SE) is the developmental reprogramming of somatic cells toward the embryogenesis pathway, the key step for genetic engineering. Investigations examining the totipotency process are of great fundamental and practical importance in crop biotechnology. However, high-frequency regeneration of cotton via SE has been limited due to genotype-dependent response. The molecular basis deciphering SE genotype recalcitrance remains largely unexplored in cotton. In the current study, to comprehensively investigate the dynamic transcriptional profiling and gene regulatory patterns involved in SE process, a genome-wide RNA sequencing analysis was performed in two cotton genotypes with distinct embryogenic abilities, the highly embryogenic genotype Yuzao 1 (YZ) and the recalcitrant genotype Lumian 1 (LM). Three typical developmental staged cultures of early SE—hypocotyls (HY), nonembryogenic calli (NEC) and primary embryogenic calli (PEC)—were selected to establish the transcriptional profiles. Our data revealed that a total of 62,562 transcripts were present amongst different developmental stages in the two genotypes. Of these, 18,394 and 26,514 differentially expressed genes (DEGs) were identified during callus dedifferentiation (NEC-VS-HY) and embryogenic transdifferentiation (PEC-VS-NEC), respectively in the recalcitrant genotype, 21,842 and 22,343 DEGs in the highly embryogenic genotype. Furthermore, DEGs were clustered into six expression patterns during cotton SE process in the two genotypes. Moreover, functional enrichment analysis revealed that DEGs were significantly enriched in fatty acid, tryptophan and pyruvate metabolism in the highly embryogenic genotype and in DNA conformation change otherwise in the recalcitrant genotype. In addition, critical SE-associated expressed transcription factors, as well as alternative splicing events, were notably and preferentially activated during embryogenic transdifferentiation in the highly embryogenic genotype compared with the recalcitrant genotype. Taken together, by systematically comparing two genotypes with distinct embryogenic abilities, the findings in our study revealed a comprehensive overview of the dynamic gene regulatory patterns and uncharacterized complex regulatory pathways during cotton SE genotype-dependent response. Our work provides insights into the molecular basis and important gene resources for understanding the underlying genotype recalcitrance during SE process and plant regeneration, thereby holding great promise for accelerating the application of biotechnology to cotton for improving its breeding efficiency.
    Electronic ISSN: 2073-4425
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-09
    Description: The somatic embryogenesis (SE) process of plants is regulated by exogenous hormones. During the SE, different genes sensitively respond to hormone signals through complex regulatory networks to exhibit plant totipotency. When cultured in indole-3-butyric acid (IBA) concentration gradient medium supplemented with 0 mg dm−3, 0.025 mg dm−3, and 0.05 mg dm−3 IBA, the callus differentiation rate first increased then decreased in cotton. To characterize the molecular basis of IBA-induced regulating SE, transcriptome analysis was conducted on embryogenic redifferentiation. Upon the examination of the IBA’s embryogenic inductive effect, it was revealed that pathways related to plant hormone signal transduction and alcohol degradation were significantly enriched in the embryogenic responsive stage (5 days). The photosynthesis, alcohol metabolism and cell cycle pathways were specifically regulated in the pre-embryonic initial period (20 days). Upon the effect of the IBA dose, in the embryogenic responsive stage (5 days), the metabolism of xenobiotics by the cytochrome P450 pathway and secondary metabolism pathways of steroid, flavonoid, and anthocyanin biosynthesis were significantly enriched. The phenylpropanoid, brassinosteroid, and anthocyanin biosynthesis pathways were specifically associated in the pre-embryonic initial period (20 days). At different developmental stages of embryogenic induction, photosynthesis, flavonoid biosynthesis, phenylpropanoid biosynthesis, mitogen-activated protein kinase (MAPK) signaling, xenobiotics metabolism by cytochrome P450, and brassinosteroid biosynthesis pathways were enriched at low a IBA concentration. Meanwhile, at high IBA concentration, the carbon metabolism, alcohol degradation, circadian rhythm and biosynthesis of amino acids pathways were significantly enriched. The results reveal that complex regulating pathways participate in the process of IBA-induced redifferentiation in cotton somatic embryogenesis. In addition, collections of potential essential signaling and regulatory genes responsible for dose IBA-induced efficient embryogenic redifferentiation were identified. Quantitative real-time PCR (qRT-PCR) was performed on the candidate genes with different expression patterns, and the results are basically consistent with the RNA-seq data. The results suggest that the complicated and concerted IBA-induced mechanisms involving multiple cellular pathways are responsible for dose-dependent plant growth regulator-induced SE. This report represents a systematic study and provides new insight into molecular signaling and regulatory basis underlying the process of dose IBA-induced embryogenic redifferentiation during SE.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...