ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-10-23
    Description: This paper proposes an integrated design and optimization approach for radial inflow turbines consisting of an automated preliminary design module and a flexible three-dimensional multidisciplinary optimization module. The latter was constructed by an evolution algorithm, a genetic algorithm-assisted self-learning artificial neural network and a dynamic sampling database. The 3-D multidisciplinary optimization approach was validated by the original T-100 turbine and the T-100re turbine obtained from the automated preliminary design approach, for maximizing the total-to-static efficiency and minimizing the rotor weight while keeping the mass flow rate constant and stress limitation satisfied. The validation results indicate that the total-to-static efficiency is 89.6%, increased by 1.3%, and the rotor weight is reduced by 0.14 kg (14.6%) based on the T-100re turbine, while the efficiency is 88.2%, increased by 2.2% and the weight is reduced by 0.49 kg (37.4%) based on the original T-100 turbine. Moreover, the T-100re turbine shows better performance at the preliminary design stage and conserves this advantage to the end, though both the aerodynamic performance of the T-100 and the T-100re turbine are improved after 3-D optimization. At the same time, it is implied that the preliminary design plays an essential role in the radial inflow turbine design process, and it is hard for only 3-D optimization to get a further performance improvement.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-12
    Description: As a competitive small-scale turbomachinery option, Tesla turbines have wide potential in various fields, such as renewable energy generation systems and small power equipment. This paper investigates the influence of disc tip geometry, including its profile and relative height, on the aerodynamic performance and flow characteristics of one-to-one and one-to-many multichannel Tesla turbines. The results indicate that compared to the turbine with blunt tips, the isentropic efficiency of the one-to-one turbine with sharp tips has a little decrease, which is because the relative tangential velocity gradient near the rotational disc walls decreases a little and additional vortices are generated at the rotor inlet, while that of the one-to-many turbine with sharp tips increases significantly, resulting from an increase in the relative tangential velocity in the disc channels and a decrease in the low Mach number and vortex area; for instance the turbine efficiency for the former relatively decreases by 3.6% and that for the latter increases by 13.5% at 30,000 r/min. In addition, the isentropic efficiency of the one-to-many turbine with sharp tips goes up with increasing relative height due to increasing improvement of flow status, and its increment rate slows down. A circular or elliptic tip performs better with lower relative height and a triangular tip behaves better with higher relative height. To sum up, a blunt disc tip is recommended for the one-to-one turbine, and a sharp disc tip is for the one-to-many turbine. The relative height and tip profile of the one-to-many turbine should be determined according to their effects on turbine performance, manufacturing difficulty and mechanical deformation.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-24
    Description: Tesla turbines are a kind of unconventional bladeless turbines, which utilize the viscosity of working fluid to rotate the rotor and realize energy conversion. They offer an attractive substitution for small and micro conventional bladed turbines due to two major advantages. In this study, the effects of two influential geometrical parameters, disc thickness and disc spacing distance, on the aerodynamic performance and flow characteristics for two kinds of multichannel Tesla turbines (one-to-one turbine and one-to-many turbine) were investigated and analyzed numerically. The results show that, with increasing disc thickness, the isentropic efficiency of the one-to-one turbine decreases a little and that of the one-to-many turbine reduces significantly. For example, for turbine cases with 0.5 mm disc spacing distance, the former drops less than 7% and the latter decreases by about 45% of their original values as disc thickness increases from 1 mm to 2 mm. With increasing disc spacing distance, the isentropic efficiency of both kinds of turbines increases first and then decreases, and an optimal value and a high efficiency range exist to make the isentropic efficiency reach its maximum and maintain at a high level, respectively. The optimal disc spacing distance for the one-to-one turbine is less than that for the one-to-many turbine (0.5 mm and 1 mm, respectively, for turbine cases with disc thickness of 1 mm). To sum up, for designing a multichannel Tesla turbine, the disc spacing distance should be among its high efficiency range, and the determination of disc thickness should be balanced between its impacts on the aerodynamic performance and mechanical stress.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-29
    Description: Stand structure and topography are important factors affecting forest vegetation carbon density (FVCD). Revealing the interaction mechanisms between stand structure and topography on FVCD is of great significance for enhancing forest vegetation carbon storage and achieving regional carbon neutrality. Based on stratified sampling, systematic distribution and forest continuous inventory sample plots in Jiangxi province, the variation characteristics of FVCD and its correlations with stand structure and topographic factors were studied. The results are as follows: (1) The average FVCD in Jiangxi province was 44.23 Mg/ha, which was dominated by the carbon density of the arbor layer, accounting for about 81.39% of the total forest—far lower than the average level of global FVCD, which proved that the forest in Jiangxi province was dominated by middle-age and young forests with low carbon density, and also showed that the potential for forest vegetation carbon storage in Jiangxi province was huge. (2) Except for vegetation carbon densities of shrub and herb layers, the vegetation carbon densities of other forest layers in Jiangxi province were significantly different among different forest types. Volume per unit area was the most important factor affecting the vegetation carbon densities of arbor and total forest, and vegetation carbon density–volume models of the main forests were built for vegetation carbon density calculation in Jiangxi province. (3) The vegetation carbon densities of arbor layer, snag and log layer, and total forest increased significantly with increases in elevation and slope. Except for the shrub layer and herb layer, the vegetation carbon densities of the other layers and the total forest had extremely significant or significant differences between slope position gradients—indicating that the effect of topography on FVCD in Jiangxi province was significant, mainly through influencing of forest distribution and human disturbance intensity.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...