ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (3)
  • 1
    Publication Date: 2020-09-03
    Description: B-cell non-Hodgkin lymphomas (B-NHLs) are often characterized by the development of resistance to chemotherapeutic drugs and/or relapse. During drug-induced apoptosis, Yin Yang 1 (YY1) transcription factor might modulate the expression of apoptotic regulators genes. The present study was aimed to: (1) examine the potential oncogenic role of YY1 in reversing drug resistance in B-NHLs; and (2) identify YY1 transcriptional target(s) that regulate the apoptotic pathway in B-NHLs. Predictive analyses coupled with database-deposited data suggested that YY1 binds the promoter of the BIRC5/survivin anti-apoptotic gene. Gene Expression Omnibus (GEO) analyses of several B-NHL repositories revealed a conserved positive correlation between YY1 and survivin, both highly expressed, especially in aggressive B-NHLs. Further validation experiments performed in Raji Burkitt’s lymphomas cells, demonstrated that YY1 silencing was associated with survivin downregulation and sensitized the cells to apoptosis. Overall, our results revealed that: (1) YY1 and survivin are positively correlated and overexpressed in B-NHLs, especially in BLs; (2) YY1 strongly binds to the survivin promoter, hence survivin may be suggested as YY1 transcriptional target; (3) YY1 silencing sensitizes Raji cells to drug-induced apoptosis via downregulation of survivin; (4) both YY1 and survivin are potential diagnostic markers and therapeutic targets for the treatment of resistant/relapsed B-NHLs.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-17
    Description: In the last decade, immune therapies against human cancers have emerged as a very effective therapeutic strategy in the treatment of various cancers, some of which are resistant to current therapies. Although the clinical responses achieved with many therapeutic strategies were significant in a subset of patients, another subset remained unresponsive initially, or became resistant to further therapies. Hence, there is a need to develop novel approaches to treat those unresponsive patients. Several investigations have been reported to explain the underlying mechanisms of immune resistance, including the anti-proliferative and anti-apoptotic pathways and, in addition, the increased expression of the transcription factor Yin-Yang 1 (YY1) and the programmed death ligand 1 (PD-L1). We have reported that YY1 leads to immune resistance through increasing HIF-1α accumulation and PD-L1 expression. These mechanisms inhibit the ability of the cytotoxic T-lymphocytes to mediate their cytotoxic functions via the inhibitory signal delivered by the PD-L1 on tumor cells to the PD-1 receptor on cytotoxic T-cells. Thus, means to override these resistance mechanisms are needed to sensitize the tumor cells to both cell killing and inhibition of tumor progression. Treatment with nitric oxide (NO) donors has been shown to sensitize many types of tumors to chemotherapy, immunotherapy, and radiotherapy. Treatment of cancer cell lines with NO donors has resulted in the inhibition of cancer cell activities via, in part, the inhibition of YY1 and PD-L1. The NO-mediated inhibition of YY1 was the result of both the inhibition of the upstream NF-κB pathway as well as the S-nitrosylation of YY1, leading to both the downregulation of YY1 expression as well as the inhibition of YY1-DNA binding activity, respectively. Also, treatment with NO donors induced the inhibition of YY1 and resulted in the inhibition of PD-L1 expression. Based on the above findings, we propose that treatment of tumor cells with the combination of NO donors, at optimal noncytotoxic doses, and anti-tumor cytotoxic effector cells or other conventional therapies will result in a synergistic anticancer activity and tumor regression.
    Electronic ISSN: 2076-3921
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-06
    Description: Colorectal cancer (CRC) is characterized by genetic heterogeneity and is often diagnosed at an advanced stage. Therefore, there is a need to identify novel predictive markers. Yin Yang 1 (YY1) is a transcription factor playing a dual role in cancer. The present study aimed to investigate whether YY1 expression levels influence CRC cell response to therapy and to identify the transcriptional targets involved. The diagnostic and prognostic values of YY1 and the identified factor(s) in CRC patients were also explored. Silencing of YY1 increased the resistance to 5-Fluorouracil-induced cytotoxicity in two out of four CRC cells with different genotypes. BCL2L15/Bfk pro-apoptotic factor was found selectively expressed in the responder CRC cells and downregulated upon YY1 knockdown. CRC dataset analyses corroborated a tumor-suppressive role for both YY1 and BCL2L15 whose expressions were inversely correlated with aggressiveness. CRC single-cell sequencing dataset analyses demonstrated higher co-expression levels of both YY1 and BCL2L15 within defined tumor cell clusters. Finally, elevated levels of YY1 and BCL2L15 in CRC patients were associated with larger relapse-free survival. Given their observed anti-cancer role, we propose YY1 and BCL2L15 as candidate diagnostic and prognostic CRC biomarkers.
    Print ISSN: 1661-6596
    Electronic ISSN: 1422-0067
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...