ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
Collection
Publisher
Years
  • 1
    Publication Date: 2020-07-03
    Description: Large Scale Wireless Sensor Networks (LS-WSNs) are Wireless Sensor Networks (WSNs) composed of an impressive number of sensors, with inherent detection and processing capabilities, to be deployed over large areas of interest. The deployment of a very large number of diverse or similar sensors is certainly a common practice that aims to overcome frequent sensor failures and avoid any human intervention to replace them or recharge their batteries, to ensure the reliability of the network. However, in practice, the complexity of LS-WSNs pose significant challenges to ensuring quality communications in terms of symmetry of radio links and maximizing network life. In recent years, most of the proposed LS-WSN deployment techniques aim either to maximize network connectivity, increase coverage of the area of interest or, of course, extend network life. Few studies have considered the choice of a good LS-WSN deployment strategy as a solution for both connectivity and energy consumption efficiency. In this paper, we designed a LS-WSN as a tool for collecting big data generated by smart cities. The intrinsic characteristics of big data require the use of heterogeneous sensors. Furthermore, in order to build a heterogeneous LS-WSN, our scientific contributions include a model of quantifying the kinds of sensors in the network and the multi-level architecture for LS-WSN deployment, which relies on clustering for the big data collection. The results simulations show that our proposed LS-WSN architecture is better than some well known WSN protocols in the literature including Low Energy Adaptive Clustering Hierarchy (LEACH), E-LEACH, SEP, DEEC, EECDA, DSCHE and BEENISH.
    Electronic ISSN: 2073-8994
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-05
    Description: In the present study, the nonlinear vibration of a nanobeam resting on the fractional order viscoelastic Winkler–Pasternak foundation is studied using nonlocal elasticity theory. The D’Alembert principle is used to derive the governing equation and the associated boundary conditions. The approximate analytical solution is obtained by applying the multiple scales method. A detailed parametric study is conducted, and the effects of the variation of different parameters belonging to the application problems on the system are calculated numerically and depicted. We remark that the order and the coefficient of the fractional derivative have a significant effect on the natural frequency and the amplitude of vibrations.
    Electronic ISSN: 2504-3110
    Topics: Mathematics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-04
    Description: In recent years, technological advances and the ever-increasing power of embedded systems have seen the emergence of so-called smart cities. In these cities, application needs are increasingly calling for Large-Scale Wireless Sensor Networks (LS-WSN). However, the design and implementation of such networks pose several important and interesting challenges. These low-cost, low-power devices are characterized by limited computing, memory storage, communication, and battery power capabilities. Moreover, sensors are often required to cooperate in order to route the collected data to a single central node (or sink). The many-to-one communication model that governs dense and widely deployed Wireless Sensor Networks (WSNs) most often leads to problems of network overload and congestion. Indeed, it is easy to show that the closer a node is geographical to the sink, the more data sources it has to relay. This leads to several problems including overloading of nodes close to the sink, high loss rate in the area close to the sink, and poor distribution of power consumption that directly affects the lives of these networks. In this context, we propose a contribution to the problem of LS-WSN energy consumption. We designed a hierarchical 3-tier architecture of LS-WSNs coupled with a modeling of the activities of the different sensors in the network. This architecture that is based on clustering also includes a redeployment function to maintain the topology in case of coverage gaps. The results of the performed simulations show that our architecture maximizes the lifetime than compared solutions.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-12-18
    Description: Data collection is one of the main operations performed in Wireless Sensor Networks (WSNs). Even if several interesting approaches on data collection have been proposed during the last decade, it remains a research focus in full swing with a number of important challenges. Indeed, the continuous reduction in sensor size and cost, the variety of sensors available on the market, and the tremendous advances in wireless communication technology have potentially broadened the impact of WSNs. The range of application of WSNs now extends from health to the military field through home automation, environmental monitoring and tracking, as well as other areas of human activity. Moreover, the expansion of the Internet of Things (IoT) has resulted in an important amount of heterogeneous data that are produced at an exponential rate. Furthermore, these data are of interest to both industry and in research. This fact makes their collection and analysis imperative for many purposes. In view of the characteristics of these data, we believe that very large-scale and heterogeneous WSNs can be very useful for collecting and processing these Big Data. However, the scaling up of WSNs presents several challenges that are of interest in both network architecture to be proposed, and the design of data-routing protocols. This paper reviews the background and state of the art of Big Data collection in Large-Scale WSNs (LS-WSNs), compares and discusses on challenges of Big Data collection in LS-WSNs, and proposes possible directions for the future.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...