ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2019-05-17
    Description: SCALA© (Sampling Campaigns for Aerosols in the Low Atmosphere) is a web-based software system that was developed in a multidisciplinary manner to integrally support the documentation and the management and analysis of atmospheric aerosol data from sampling campaigns. The software development process applied considered the prototyping and the evolutionary approaches. The software product (SCALA©) allows for the comprehensive management of the sampling campaigns’ life cycle (management of the profiles and processes involved in the start-up, development and closure of a campaign) and provides support for both intra- and inter-campaigns data analysis. The pilot deployment of SCALA© considers the Spanish Network on Environmental Differential Mobility Analysers (DMAs) (REDMAAS) and the PROACLIM project. This research project involves, among other objectives, the study of temporal and spatial variations of the atmospheric aerosol through a set of microphysical properties (size distribution, optical properties, hygroscopicity, etc.) measured in several locations in Spain. The main conclusions regarding size distribution are presented in this work. These have been have been extracted through SCALA© from the data collected in the REDMAAS 2015 and 2019 intercomparison campaigns and two years (2015 and 2016) of measurements with two Scanning Mobility Particle Sizers (SMPS) at CIEMAT (Madrid, central Spain) and UDC (A Coruña, NW of Spain) sites.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-11
    Description: In this study, the feasibility of using ceilometer signals to retrieve radiative forcing values is evaluated. The Global Atmospheric Model (GAME) radiative transfer model is used to estimate the shortwave and longwave radiative forcing using an aerosol parameterization based on AERONET data and vertical profiles from a Lufft CHM-15k Nimbus ceilometer. First, eight cases confirmed as dusty days are analyzed to check the feasibility of using ceilometer profiles to feed GAME. The obtained radiative forcing estimates are in good agreement with the literature showing negative values in the short wave (SW) (cooling effect) and positive values in the long wave (LW) (heating effect), both at all levels. As in the literature, radiative forcing estimates show a strong dependence on variations in the aerosol optical depth (AOD), solar zenith angle (θz), surface temperature (ST), and single scattering albedo at 440 nm (SSA440). Thus, GAME can be fed using ceilometer measurements obtaining reliable results. Then, as the temporal evolution of the AOD440 between 27 January and 15 June compared to the 6-year weekly AERONET AOD440 average (from 2014 to 2019) shows a decrease because of the lockdown imposed in Spain due to the COVID-19, a total of 37 radiative forcing calculations without African dust, divided into 8 scenarios, are performed in order to check the effect of the lockdown measures in the radiative forcing. It is shown that the decrease in the AOD, during the lockdown, caused a decrease in the cooling effect in the SW spectral range at all levels. Besides, the increase in the ST increased the heating effect of the aerosols in the LW at the top of the atmosphere and the presence of pollution and absorbing particles (SSA440 〈 0.90) caused an increase of the heating effect in the LW at the surface. Therefore, the observed variations in the radiative forcing estimates before and during the lockdown are directly related with the decrease in emissions of aerosols related to human activities.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-12
    Description: In this paper, we study the effect of the vertical distribution of aerosols on the inversion process to obtain microphysical properties of aerosols. The GRASP code is used to retrieve the aerosol size distribution from two different schemes. Firstly, only sun/sky photometer measurements of aerosol optical depth and sky radiances are used as input to the retrieval code, and then, both this information and the range-corrected signals from an advanced lidar system are provided to the code. Measurements taken at the Madrid EARLINET station, complemented with those from the nearby AERONET station, have been analyzed for the 2016–2019 time range. The effect found of the measured vertical profile on the inversion is a shift to smaller radius of the fine mode with average differences of 0.05 ± 0.02 µm, without noticeable effects for the coarse mode radius. This coarse mode is sometimes split into two modes, related to large AOD or elevated aerosol-rich layers. The first scheme´s retrieved size distributions are also compared with those provided by AERONET, observing the unusual persistence of a large mode centered at 5 µm. These changes in the size distributions affect slightly the radiative forcing calculated also by the GRASP code. A stronger forcing, dependent on the AOD, is observed in the second scheme. The shift in the fine mode and the effect on the radiative forcing indicate the importance of considering the vertical profile of aerosols on the retrieval of microphysical properties by remote sensing.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...