ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (4)
  • Wiley  (1)
  • 1
    Publication Date: 2020-08-13
    Description: Long-term data series (1971–2015) of physical and biogeochemical parameters were analyzed in order to assess trends and variability of oceanographic conditions in the northern Adriatic Sea (NAS), a mid-latitude shallow continental shelf strongly impacted by river discharges, human activities and climate changes. Interpolation maps and statistical models were applied to investigate seasonal and spatial variability, as well as decadal trends of temperature, salinity, chlorophyll-a and nutrients. This analysis shows that sea surface temperature increased by +0.36% year−1 over four decades. Annual mean flow of the Po River markedly changed due to the occurrence of periods of persistent drought, whereas the frequency of flow rates higher than 3000 m3 s−1 decreased between 2006 and 2015. Moreover, we observed a long-term decrease in surface phosphate concentrations in Po River water (−1.34% year−1) and in seawater (in summer −2.56% year−1) coupled, however, to a significant increase in nitrate concentration in seawater (+3.80% year−1) in almost all seasons. These changes indicate that the nutrient concentrations in the NAS have been largely modulated, in the last forty years, by the evolution of environmental management practices and of the runoff. This implies that further alteration of the marine environment must be expected as a consequence of the climate changes.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-09-22
    Description: During the last century, human activities have exerted an increasing pressure on coastal ecosystems, primarily inducing their eutrophication, with a more recent partial mitigation of this phenomenon where improvements of environmental management practices were adopted. However, a reanalysis of the pressures on coastal zones and surrounding drainage basins is needed because of the alterations induced nowadays by the climate changes. A comparative analysis of long-term oceanographic and environmental data series (1986–2018) was performed, in order to highlight the effects of anthropogenic and climatic disturbances on the phytoplankton community in the Gulf of Trieste (GoT). After the 1980s, the decline in phytoplankton abundance was matched to increasing periods of low runoff, an overall deficit of the precipitation and to a decrease in phosphate availability in the coastal waters (−0.003 µmol L−1 yr−1), even in the presence of large riverine inputs of nitrogen and silicates. This trend of oligotrophication was reversed in the 2010s by the beginning of a new and unexpected phase of climatic instability, which also caused changes of the composition and seasonal cycle of the phytoplankton community. Beyond the management of nutrient loads, it was shown that climatic drivers such as seawater warming, precipitation and wind regime affect both nutrient balance and phytoplankton community in this coastal zone.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-20
    Description: In the last century, large watersheds in Southern Europe have been impacted by a combination of anthropogenic and climatic pressures, which have rapidly evolved to change the ecological status of freshwater and coastal systems. A comparative analysis was performed for Ebro, Rhône, Po and Danube rivers, to investigate if they exhibited differential dynamics in hydrology and water quality that can be linked to specific human and natural forces acting at sub-continental scales. Flow regime series were analyzed from daily to multi-decadal scales, considering frequency distributions, trends (Mann–Kendall and Sen tests) and discontinuities (SRSD Method). River loads of suspended matter, nutrients and organic matter and the eutrophication potential of river nutrients were estimated to assess the impact of river loads on adjacent coastal areas. The decline of freshwater resources largely impacted the Ebro watershed on annual (−0.139 km3 yr−1) and seasonal (−0.4% yr−1) scales. In the other rivers, only spring–summer showed significant decreases of the runoff coupled to an exacerbated flow variability (0.1–0.3% yr−1), which suggested the presence of an enhanced regional climatic instability. Discontinuities in annual runoff series (every 20–30 years) indicated a similar long-term evolution of Rhône and Po rivers, differently from Ebro and Danube. Higher nutrient concentrations in the Ebro and Po (+50%) compared to Rhône and Danube and distinct stoichiometric nutrient ratios may exert specific impacts on the growth of plankton biomass in coastal areas. The overall decline of inorganic phosphorus in the Rhône and Po (since the 1980s) and the Ebro and Danube (since the 1990s) mitigated the eutrophication in coastal ecosystems inducing, however, a phase in which the role of organic phosphorus loads (Po 〉 Danube 〉 Rhône 〉 Ebro) on coastal productivity could be more relevant. Overall, the study showed that the largest South European watersheds are differently impacted by anthropogenic and climatic forces and that this will influence their vulnerability to future changes of flow regime and water quality.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-04
    Description: The effects of changing hydrological and climatic conditions on the dynamics of phosphorus (P) were studied in the Northern Adriatic Sea (NA), a coastal system currently affected by these changes. P limitation is one of the key stresses in the NA and it is a globally important phenomenon in aquatic ecosystems. Therefore, the response to P stress by inducing alkaline phosphatase activity (APA) was studied in characteristic water types in the NA, formed by the changing freshwater input in different thermic conditions. APA was important in providing P for microbial growth in upper waters dominated by assimilation during the warmer part of the year in stratified conditions. Contrarily, APA was not important during mixing in the colder part of the year, as well as in waters dominated by regeneration. In waters influenced by freshwater, temperature had no effect on APA, while in high-salinity waters, temperature was an important factor for APA increase. The highest APA occurred during riverine nutrients supply, indicating that the alteration of anthropogenic nutrient loads might strongly change P status in this coastal system. Furthermore, predicted increases in winter sea temperature and summer Po River discharge could delay the water column mixing, prolonging periods of P limitation.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-08
    Description: Key Points In Kongsfjorden, an Arctic glacier fjord, freshwater from glacier runoff and ice meltwater decreases phosphate, alkalinity and DOM concentrations Estuarine mixing is the major driver of summer CO2 undersaturation in glacially modified waters and near‐corrosive conditions were observed Future changes will amplify ocean acidification in the inner‐fjord surface waters Abstract A detailed survey of a high Arctic glacier fjord (Kongsfjorden, Svalbard) was carried out in summer 2016, close to the peak of the meltwater season, in order to identify the effects of glacier runoff on nutrient distributions and the carbonate system. Short‐term weather patterns were found to exert a strong influence on freshwater content within the fjord. Freshwater inputs from glacier runoff and ice meltwater averaged (±SD) low nitrate (1.85±0.47 μM; 0.41±0.99 μM), orthophosphate (0.07±0.27 μM; 0.02 ±0.03 μM), dissolved organic carbon (27 ±14 μM in glacier runoff), total alkalinity (708±251 μmol kg‐1; 173±121 μmol kg‐1) and dissolved inorganic carbon (622±108 μmol kg‐1; 41±88 μmol kg‐1), as well as a modest silicate concentration (3.71±0.02 μM; 3.16±5.41 μM). pCO2 showed a non‐conservative behavior across the estuarine salinity gradient with a pronounced under‐saturation in the inner‐fjord, leading to strong CO2 uptake from the atmosphere. The combined effect of freshwater dilution and atmospheric CO2 absorption was the lowering of aragonite saturation state, to values that are known to negatively affect marine calcifiers (ΩAr, 1.07). Glacier discharge was therefore a strong local amplifier of ocean acidification. Future increases in discharge volume and the loss of marine productivity following the retreat of marine‐terminating glaciers inland are both anticipated to further lower ΩAr within inner‐fjord surface waters. This shift may be partially buffered by an increase in the mean freshwater total alkalinity as the fractional importance of iceberg melt to freshwater fjord inputs declines and runoff increases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...