ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk  (2)
  • 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous  (1)
  • C14
  • E52
  • J24
  • Lunar and Planetary Science and Exploration
  • Miscellanea INGV  (3)
  • 1
    Publication Date: 2021-03-01
    Description: Natural disasters, such as earthquakes and volcanic eruptions, have strong effects on the socioeconomic well-being of countries and their people. The consequences of these events can lead to complex cascades of related incidents, and in more serious contexts they can threaten our basic survivability. The problem of the seismic risk is a well-known issue at Etna due to the high-intensities volcano-tectonic earthquakes that frequently damage the very populated flanks of the volcano. In the framework of the european UPStrat-MAFA project, seismic hazard was performed following the probabilistic approach (PSHA) based on historical macroseismic data, by using the SASHA code [D’Amico and Albarello, 2008]. This approach uses intensity site observations to compute the seismic history for each investigated locality; the results, are expressed in terms of maximum intensity expected in a given exposure time, for exceedance probability thresholds. The seismic site histories were reconstructed from the database of macroseismic observation related to the historical catalogue of Mt. Etna from 1832 to 2013 [CMTE, 2014], implemented by “spot” observations as far back as 1600 [Azzaro and Castelli, 2014]. To improve the completeness of the site seismic histories, the dataset of the observed intensities was integrated with ‘virtual’ values, calculated according to attenuation laws. The attenuation model applied is based on Bayesian statistics performed on the Etna dataset [Rotondi et al., 2013], and provides the probabilistic distribution of the intensity at a given site. The hazard maps, calculated using a grid spaced 1 km, shows that for short exposure times (10 and 30 years, Figure 1a), volcano-tectonic earthquakes are the main source of shaking for the area. In particular localities in the eastern flank of the volcano have very high probabilities to suffer damage at least of VII degree in the next 30 years. Moreover, the de-aggregation analysis between magnitude vs seismic source demonstrates that S. Tecla fault (STF in Figure 1b) is one of the structures that mostly contribute to the hazard.
    Description: Published
    Description: Nicolosi, Italy
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Studies on seismicity at Mt. Etna are of extreme importance for the high seismic and volcanic risk which characterizes the area. In this region, seismic events are mainly located at less than 5 km b.s.l. depth, producing arrivals with medium-to low-frequency content and/or complicated signatures at stations just a few kilometers distant from the epicentral area [Patanè and Giampiccolo, 2004]; on the other hand, earthquakes which present high frequency content and sharp arrivals, similar to those of typical earthquakes of tectonic areas, are mainly located between 5 and 20 km. Seismicity mainly occurs in the form of swarms, whereas foreshock-mainshock-aftershock sequences are rarely recorded, and seldom exceed magnitude 4.0 [Ferrucci and Patanè, 1993]. In volcanic areas the calculation of the local magnitude ML is more objective than that of MD because the measurement of the signal amplitude is less ambiguous with respect to the decay of the earthquake coda, which may be masked by the presence of noise, volcanic tremor, or other shocks [Del Pezzo and Petrosino, 2001; D’Amico and Maiolino, 2005]. Therefore, since magnitude estimation in MD and ML, although mutually related, do not produce the same results, it is mandatory to adopt an empirical conversion to produce a homogeneous catalogue for Mt. Etna region. The Standard Linear Regression (SLR) is the simplest and most commonly used regression procedure applied in literature [Gasperini, 2002; Bindi et al., 2005]. However its application without checking whether its basic requirements are satisfied may lead to wrong results [Castellaro et al., 2006]. As an alternative it is better to use the Orthogonal Regression (OR) relation [Carrol and Ruppert, 1996], which assumes a different uncertainty for each of the two variables [Lolli and Gasperini, 2012]. Investigating the performance of different regression procedures commonly used to convert magnitudes from one type into another one, is also an operation which has strong influence on the slope of the frequency-magnitude distribution (the b-value of the Gutenberg-Richter). In particular, the frequencymagnitude distribution can be heavily biased when calculated on magnitudes converted from various scales. By contrast, it is possible to obtain unbiased estimates of a and b values by converting magnitudes through OR. The application of OR requires the estimate of the ratio between the dependent and the independent variable variances, and when only the ratio variance is known, the OR represents the simplest and mostly used approach. A database of magnitude observations recorded at Mt. Etna during the period 2005 – 2012 is used for this study [Gruppo Analisi Dati Sismici, 2013]. The new ML-MD relationship obtained by applying the OR is: ML=1.237(±0.009)MD - 0.483(±0.016) with a correlation coefficient R=0.90 and rms between observed and calculated ML of 0.27. The superiority of the OR relation over the SLR has been demonstrated on the basis of the best fitting between regression line and data distribution. The ML-MD relationship obtained significantly reduces the previous bias between ML and MD estimated for earthquakes recorded at Mt. Etna and will be used for the purpose of catalogue homogenization. We conclude that the commonly used SLR may induce systematic errors in magnitude conversion; this can introduce apparent catalogue incompleteness, as well as a heavy bias in estimates of the slope of the frequency–magnitude distributions.
    Description: Published
    Description: Nicolosi, Italy
    Description: 2T. Tettonica attiva
    Description: open
    Keywords: Local magnitude, duration magnitude ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The Project SIGMA (Sistema Integrato di sensori in ambiente cloud per la Gestione Multirischio Avanzata) arises from the fields of Information and Communications Technologies (ICT) and advanced applications for the control, monitoring and management of high-risk processes of natural and social origin. SIGMA is a multilevel architecture whose main aim is the acquisition, integration and processing of heterogeneous data from different sources (seismic, volcanic, meteorologic, hydric, pluvial, car traffic, marine traffic, and so on) to manage and elaborate risk mitigation strategies which are important for the emergency management planning. Within the several experimental activities included in the project, there is the designing and realization of a prototype of application platform specialized to provide the operating procedures and software to the public administrations and the industrial companies, for constantly monitoring both the anthropic and natural phenomena in Sicily. In this framework, of course, the seismic risk analysis plays a very important role since Sicily is one of the Italian regions with high seismic risk. Seismic risk assessment may be approached in two different ways: i) as average seismic risk of the buildings and facilities in question during the period considered, combining the vulnerability of different building types and the seismic hazard for the site, which are then expressed in terms of the effects of the events derived from an earthquake catalogue that exceed a specified threshold during a given period; ii) as estimated damage of the buildings and the critical facilities using a scenario input described in terms of the source parameters of the hypocenter as location, magnitude, and so on. Here we deal with the hazard calculation through the code CRISIS (Ordaz, Aguilar and Arboleda) and with the code PROSCEN (PRObabilistic SCENario, [Rotondi and Zonno, 2010]) to obtain earthquake scenario to be used in the latter approach. Indeed, an earthquake scenario is a planning tool that helps decision makers to visualize the specific impact of an earthquake based on the scientific knowledge. An earthquake scenario creates a picture that the members of community can recognize and, at the same time, improves the communication between the scientific, emergency management and policy communities to seismic risk reduction.
    Description: Published
    Description: Nicolosi, Italy
    Description: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Description: open
    Keywords: Seismic hazard ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Extended abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...