ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-02
    Description: This paper presents a novel approach for estimating the ego-motion of a vehicle in dynamic and unknown environments using tightly-coupled inertial and visual sensors. To improve the accuracy and robustness, we exploit the combination of point and line features to aid navigation. The mathematical framework is based on trifocal geometry among image triplets, which is simple and unified for point and line features. For the fusion algorithm design, we employ the Extended Kalman Filter (EKF) for error state prediction and covariance propagation, and the Sigma Point Kalman Filter (SPKF) for robust measurement updating in the presence of high nonlinearities. The outdoor and indoor experiments show that the combination of point and line features improves the estimation accuracy and robustness compared to the algorithm using point features alone.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-11-16
    Description: Sensors, Vol. 17, Pages 2623: Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass Sensors doi: 10.3390/s17112623 Authors: Guoliang Han Xiaoping Hu Junxiang Lian Xiaofeng He Lilian Zhang Yujie Wang Fengliang Dong Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0 . 15 ∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-21
    Description: Energies, Vol. 10, Pages 1912: Modeling and Control of Fluid Flow Networks with Application to a Nuclear-Solar Hybrid Plant Energies doi: 10.3390/en10111912 Authors: Zhe Dong Yifei Pan Zuoyi Zhang Yujie Dong Xiaojin Huang Fluid flow networks (FFNs) can be utilized to integrate multiple once-through heat supply system (OTHSS) modules based on either the same or different energy resources such as the renewable, nuclear and fossil for multi-modular and hybrid energy systems. Modeling and control is very important for the safe, stable and efficient operation of the FFNs, whose objective is to maintain both the flowrates and pressure-drops of the network branches within specific bounds. In this paper, a differential-algebraic nonlinear dynamic model for general FFNs with multiple pump branches is proposed based on both the branch hydraulics and network graph properties. Then, an adaptive decentralized FFN flowrate-pressure control law, which takes a proportional-integral (PI) form with saturation on the integral terms, is established. This newly-built control not only guarantees satisfactory closed-loop global stability but also has no need for the values of network hydraulic parameters. This adaptive control is then applied to the flowrate-pressure regulation of the secondary FFN of a two-modular nuclear-solar hybrid energy system and numerical simulation results show the feasibility and high performance of this network control strategy. Due to its concise form, this new flowrate-pressure FFN controller can be easily implemented practically.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-20
    Description: Materials, Vol. 11, Pages 1042: Experimental and Theoretical Investigation of Thiazolyl Blue as a Corrosion Inhibitor for Copper in Neutral Sodium Chloride Solution Materials doi: 10.3390/ma11061042 Authors: Li Feng Shengtao Zhang Yujie Qiang Yue Xu Lei Guo Loutfy H. Madkour Shijin Chen The anticorrosion effect of thiazolyl blue (MTT) for copper in 3% NaCl at 298 K was researched by electrochemical methods, scanning electron-microscopy (SEM), and atomic force microscopy (AFM). The results reveal that MTT can protect copper efficiently, with a maximum efficiency of 95.7%. The corrosion inhibition mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectral (FT-IR), and theoretical calculation. The results suggest that the MTT molecules are adsorbed on metal surface forming a hydrophobic protective film to prevent copper corrosion. It also indicates that the MTT and copper form covalent bonds. The molecular dynamic simulation further gives the evidence for adsorption. The adsorption isotherm studies demonstrate that a spontaneous, mixed physical and chemical adsorption occurs, which obeys Langmuir adsorption isotherm. The present research can help us better understand the corrosion inhibition process and improve it.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-03-23
    Description: Atmospheric volatile organic compounds (VOCs) measurement was carried out using gas chromatography-flame ionization detector (GC-FID) technique (Airmo VOCs online analyzer) in a typical urban area in Beijing from April 2014 to January 2015. Ambient levels, variation characteristics and influential factors contributing to the formation of near-ground-ozone and secondary organic aerosols as well as health risk assessment of VOCs were analyzed. Based on these analyses, the important VOC species that should be given more attention for pollution control were identified and the source apportionment of VOCs was made. Suggestions for VOCs pollution control countermeasures were put forward. The annual average concentration of 84 VOCs was 119 μg·m−3 and the hourly mean concentration was 9.11–567 μg·m−3. Ambient level of VOCs in Beijing has been alleviated in recent years, but is still severe compared to some other cities. VOCs with the largest proportion were alkanes in spring and halogenated hydrocarbons in summer, autumn and winter. The variation of 84 VOCs concentrations was consistent with that of the ambient air quality index, indicating that VOCs had a strong influence on ambient air quality. Influenced by the concentration and activity of VOCs, the largest contribution to ozone formation potential and secondary organic aerosol formation potential came from alkenes and aromatic hydrocarbons, respectively. Five VOCs species such as benzene pose carcinogenic risk to exposed populations. Contrary to some previous studies, benzene was found to have potential cancer risk in some urban areas in China. The main sources of VOCs in the study area were vehicle exhaust, solvent usage, and industrial processes. In order to improve air quality in Beijing and reduce the infection rate of air pollutant related diseases, it is necessary to strengthen the control the emission of VOCs from those three sources.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...