ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-08
    Description: Detection of small molecules or proteins of living cells provides an exceptional opportunity to study genetic variations and functions, cellular behaviors, and various diseases including cancer and microbial infections. Our aim in this review is to give an overview of selected research activities related to nucleic acid-based aptamer techniques that have been reported in the past two decades. Limitations of aptamers and possible approaches to overcome these limitations are also discussed.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-04
    Description: The 3 km Dark Target (DT) aerosol optical depth (AOD) products, 10 km DT and Deep Blue (DB) AOD products from the Collection 6 (C6) product data of Moderate Resolution Imaging Spectroradiometer (MODIS) are compared with Sun-sky Radiometer Network (SONET) measurements at Song Mountain in central China, where ground-based remote sensing measurements of aerosol properties are still very limited. The seasonal variations of AODs are significant in the Song Mountain region, with higher AODs in spring and summer and lower AODs in autumn and winter. Annual mean AODs (0.55 µm) vary in the range of 0.5–0.7, which indicates particle matter (PM) pollutions in this mountain region. Validation against one-year ground-based measurements shows that AOD retrievals from the MODIS onboard Aqua satellite are better than those from the Terra satellite in Song Mountain. The 3 km and 10 km AODs from DT algorithms are comparable over this region, while the AOD accuracy of DB algorithm is relatively lower. However, the spatial coverage of DB products is higher than that of 10 km DT products. Moreover, the optical and microphysical characteristics of aerosols at Song Mountain are analyzed on the basis of SONET observations. It suggests that coarse-mode aerosol particles dominate in spring, and fine-mode particles dominate in summer. The aerosol property models are also established and compared to aerosol types used by MODIS algorithm.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-11
    Description: Materials, Vol. 11, Pages 1401: Enhanced Stretch Formability of AZ31 Magnesium Alloy Thin Sheet by Induced Precompression and Sequent Annealing Materials doi: 10.3390/ma11081401 Authors: Lifei Wang Bo Song Zhengyong Zhang Hua Zhang Tingzhuang Han Xiaoqing Cao Hongxia Wang Weili Cheng In this study, precompression deformation with a strain level of 5.38% along the transverse direction (TD) at room temperature was conducted on a AZ31 magnesium alloy thin sheet with thickness of 1mm. Then subsequent annealing treatment was carried out at various temperatures (200, 300, 400, and 500 °C) to induce static recrystallization (SRX) and grain growth. The stretch formability was also investigated using the hemispherical test. The results showed that the twinning texture induced by the precompression process was nearly inherited by recrystallized grains after annealing process. Grains grew up and the size increased with the increase of annealing temperature. The largest grain size was obtained when annealing at 400 °C. The mechanical properties including strength and ductility decreased due to the development of coarse grains, however, the stretch formability was enhanced significantly. Indeed, the IE-value increased from 2.83 mm in the as-received Mg alloy sheet to 5.78 mm in the precompressed and 400 °C annealed specimens, leading to an improvement of 104%. This was ascribed to the rotated grain orientation and higher activity of (10–12) twins in coarse grains.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-05-25
    Description: Epidemiological and experimental studies have consistently linked alcoholic beverage consumption with the development of several chronic disorders, such as cancer, cardiovascular diseases, diabetes mellitus and obesity. The impact of drinking is usually dose-dependent, and light to moderate drinking tends to lower risks of certain diseases, while heavy drinking tends to increase the risks. Besides, other factors such as drinking frequency, genetic susceptibility, smoking, diet, and hormone status can modify the association. The amount of ethanol in alcoholic beverages is the determining factor in most cases, and beverage types could also make an influence. This review summarizes recent studies on alcoholic beverage consumption and several chronic diseases, trying to assess the effects of different drinking patterns, beverage types, interaction with other risk factors, and provide mechanistic explanations.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-10-09
    Description: Energies, Vol. 10, Pages 1526: Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement Energies doi: 10.3390/en10101526 Authors: Jiefeng Liu Hanbo Zheng Yiyi Zhang Hua Wei Ruijin Liao Conventional dielectric response measurement techniques, for instance, recovery voltage measurement (RVM), frequency domain spectroscopy (FDS) and polarization–depolarization current (PDC) are effective nondestructive insulation monitoring techniques for oil-impregnated power transformers. Previous studies have focused mainly on some single type of dielectric measurement method. However, the condition of oil paper insulation in transformer is affected by many factors, so it is difficult to predict the insulation status by means of a single method. In this paper, the insulation condition assessment is performed by grey relational analysis (GRA) technique after carefully investigating different dielectric response measurement data. The insulation condition sensitive parameters of samples with unknown insulation status are extracted from different dielectric response measurement data and then these are used to contrast with the standard insulation state vector models established in controlled laboratory conditions by using GRA technique for predicting insulation condition. The performance of the proposed approach is tested using both the laboratory samples and a power transformer to demonstrate that it can provide reliable and effective insulation diagnosis.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-04-12
    Description: Energies, Vol. 11, Pages 898: Evaluation of a Compact Coaxial Underground Coal Gasification System Inside an Artificial Coal Seam Energies doi: 10.3390/en11040898 Authors: Fa-qiang Su Akihiro Hamanaka Ken-ichi Itakura Gota Deguchi Wenyan Zhang Hua Nan The Underground Coal Gasification (UCG) system is a clean technology for obtaining energy from coal. The coaxial UCG system is supposed to be compact and flexible in order to adapt to complicated geological conditions caused by the existence of faults and folds in the ground. In this study, the application of a coaxial UCG system with a horizontal well is discussed, by means of an ex situ model UCG experiment in a large-scale simulated coal seam with dimensions of 550 × 600 × 2740 mm. A horizontal well with a 45-mm diameter and a 2600-mm length was used as an injection/production well. During the experiment, changes in temperature field and product gas compositions were observed when changing the outlet position of the injection pipe. It was found that the UCG reactor is unstable and expands continuously due to fracturing activity caused by coal crack initiation and extension under the influence of thermal stress. Therefore, acoustic emission (AE) is considered an effective tool to monitor fracturing activities and visualize the gasification zone of coal. The results gathered from monitoring of AEs agree with the measured data of temperatures; the source location of AE was detected around the region where temperature increased. The average calorific value of the produced gas was 6.85 MJ/Nm3, and the gasification efficiency, defined as the conversion efficiency of the gasified coal to syngas, was 65.43%, in the whole experimental process. The study results suggest that the recovered coal energy from a coaxial UCG system is comparable to that of a conventional UCG system. Therefore, a coaxial UCG system may be a feasible option to utilize abandoned underground coal resources without mining.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-07-28
    Description: Remote Sensing, Vol. 10, Pages 1187: The Retrieval of 30-m Resolution LAI from Landsat Data by Combining MODIS Products Remote Sensing doi: 10.3390/rs10081187 Authors: Jianmin Zhou Shan Zhang Hua Yang Zhiqiang Xiao Feng Gao Leaf area index (LAI) is a critical vegetation structural parameter in biogeochemical and biophysical ecosystems. High-resolution LAI products play an essential role in regional studies. Empirical methods, which normally use field measurements as their training samples and have been identified as the most commonly used approaches to retrieve structural parameters of vegetation from high-resolution remote-sensing data, are limited by the quality of training samples. Few efforts have been made to generate training samples from existing global LAI products. In this study, two methods (a homogeneous and pure pixel filter method (method A) and a pixel unmixing method (method B)) were developed to extract training samples from moderate-resolution imaging spectroradiometer (MODIS) surface reflectance and LAI products, and a support vector regression (SVR) algorithm trained by the samples was used to retrieve the high-resolution LAI from Landsat data at Baoding, situated in the Hebei Province in China, and Des Moines, situated in Iowa, United States. For the homogeneous and pure pixel filter method, two different sets of training samples were designed. One was composed of upscaled Landsat reflectance at the 500-m resolution and MODIS LAI products (dataset A1); the other was composed of MODIS reflectance and LAI products (dataset A2). With them, two inversion models were developed using SVR. For the pixel unmixing method, the training samples (dataset B) were extracted from unmixed MODIS surface reflectance and LAI products at 30-m resolution, and the third inversion model was obtained with them. LAI inversion results showed that good agreement with field measurements was achieved using these three inversion models. The R2 (coefficient of determination) value and the root mean square error (RMSE) value were computed to assess the results. For all tests, the R2 values are higher than 0.74 and RMSE values are less than 0.73. These tests showed that three models for the two methods combined with MODIS products can retrieve 30-m resolution LAI from Landsat data. The results of the pixel unmixing method was slightly better than that of the homogeneous and pure pixel filter method.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-22
    Description: In this study, 24 h PM2.5 (particles with an equivalent diameter equal to or below 2.5 μm) samples were collected in winter and summer in Xi’an, Northwestern China to characterize the seasonal variations of eleven elements (As, Cd, Cr, Fe, K, Mn, Mo, Pb, Ni, Zn, and Cu) and to evaluate their health risks by using the US EPA (U.S. Environmental Protection Agency) method. Mass concentrations of the elements (except Ni) in winter were much higher than those in summer, with similar variations for both seasons. The levels of elements followed a decreasing order of K > Zn > Fe > Pb > Cr > As > Mn > Cu > Mo > Ni > Cd. According to the enrichment factor (EF) analysis, the highest EF value for Cd inferred that it should be linked with the metal smelting and other anthropogenic sources. In contrast, the EF values of K and Mn (1 〈 EF 〈 5) suggested that they were influenced by both natural and anthropogenic sources. The daily average exposure dose for children and adults by different exposure pathways were both ingestion > dermal contact > inhalation. The non-cancer risks for different exposure pathways showed different orders. The non-cancer risks (hazard quotients) were lower than the average risk threshold (1.0) except for As, Pb, and Cr, which require greater attention. Elements of As and Cr were higher than the cancer risk threshold value (1 × 10−6), indicating that the cancer risks of PM2.5 elements in Xi’an should be a concern.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-05-08
    Description: Currently, the main difficulty in separating the land surface temperature (LST) and land surface emissivity (LSE) from field-measured hyperspectral Thermal Infrared (TIR) data lies in solving the radiative transfer equation (RTE). Based on the theory of wavelet transform (WT), this paper proposes a method for accurately and effectively separating LSTs and LSEs from field-measured hyperspectral TIR data. We show that the number of unknowns in the RTE can be reduced by decomposing and reconstructing the LSE spectrum, thus making the RTE solvable. The final results show that the errors introduced by WT are negligible. In addition, the proposed method usually achieves a greater accuracy in a wet-warm atmosphere than that in a dry-cold atmosphere. For the results under instrument noise conditions (NE∆T = 0.2 K), the overall accuracy of the LST is approximately 0.1–0.3 K, while the Root Mean Square Error (RMSE) of the LSEs is less than 0.01. In contrast to the effects of instrument noise, our method is quite insensitive to noises from atmospheric downwelling radiance, and all the RMSEs of our method are approximately zero for both the LSTs and the LSEs. When we used field-measured data to better evaluate our method’s performance, the results showed that the RMSEs of the LSTs and LSEs were approximately 1.1 K and 0.01, respectively. The results from both simulated data and field-measured data demonstrate that our method is promising for decreasing the number of unknowns in the RTE. Furthermore, the proposed method overcomes some known limitations of current algorithms, such as singular values and the loss of continuity in the spectrum of the retrieved LSEs.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-27
    Description: Localized surface plasmon resonances (LSPRs) in metallic nanostructures have been studied intensely in the last decade. Fano interference is an important way to decrease the resonance linewidth and enhance the spectral detection resolution, but realizing a Fano lineshape with both a narrow linewidth and high spectral contrast-ratio is still challenging. Here we propose a metallic nanostructure consisting of a concentric square ring-disk (CSRD) nanostructure and an outside nanorod. Fano linewidth and spectral contrast ratio can be actively manipulated by adjusting the gap between the nanorod and CSRD, and by adjusting the gap between the ring and disk in CSRD. When the gap size in CSRD is reduced to 5 nm, the quadrupolar Fano linewidth is of 0.025 eV, with a contrast ratio of 80%, and the figure of merit reaches 15.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...