ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-12-10
    Description: Based on the principle of maximum entropy method (MEM) for quantitative texture analysis, the differential evolution (DE) algorithm was effectively introduced. Using a DE-optimized algorithm with a faster but more stable convergence rate of iteration reliable complete orientation distributions (C-ODF) have been obtained for deep-drawn IF steel sheets and the recrystallized aluminum foils after cold-rolling, which are designated as showing a macroscopic cubic-orthogonal symmetry. With special reference to the data processing, no more other assumptions are required for DE-optimized MEM except that the system entropy approach the maximum.
    Electronic ISSN: 1099-4300
    Topics: Chemistry and Pharmacology , Physics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-10-21
    Description: Chinese liquors can be classified according to their flavor types. Accurate identification of Chinese liquor flavors is not always possible through professional sommeliers’ subjective assessment. A novel polymer piezoelectric sensor electric nose (e-nose) can be applied to distinguish Chinese liquors because of its excellent ability in imitating human senses by using sensor arrays and pattern recognition systems. The sensor, based on the quartz crystal microbalance (QCM) principle is comprised of a quartz piezoelectric crystal plate sandwiched between two specific gas-sensitive polymer coatings. Chinese liquors are identified by obtaining the resonance frequency value changes of each sensor using the e-nose. However, the QCM principle failed to completely account for a particular phenomenon: we found that the resonance frequency values fluctuated in the stable state. For better understanding the phenomenon, a 3D Computational Fluid Dynamics (CFD) simulation using the finite volume method is employed to study the influence of the flow-induced forces to the resonance frequency fluctuation of each sensor in the sensor box. A dedicated procedure was developed for modeling the flow of volatile gas from Chinese liquors in a realistic scenario to give reasonably good results with fair accuracy. The flow-induced forces on the sensors are displayed from the perspective of their spatial-temporal and probability density distributions. To evaluate the influence of the fluctuation of the flow-induced forces on each sensor and ensure the serviceability of the e-nose, the standard deviation of resonance frequency value (SDF) and the standard deviation of resultant forces (SDFy) in y-direction (Fy) are compared. Results show that the fluctuations of Fy are bound up with the resonance frequency values fluctuations. To ensure that the sensor's resonance frequency values are steady and only fluctuate slightly, in order to improve the identification accuracy of Chinese liquors using the e-nose, the sensors in the sensor box should be in the proper place, i.e., where the fluctuations of the flow-induced forces is relatively small. This plays a significant reference role in determining the optimum design of the e-nose for accurately identifying Chinese liquors.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-09-26
    Description: IJERPH, Vol. 14, Pages 1114: Evaluation of Environmental Risk Due to Metro System Construction in Jinan, China International Journal of Environmental Research and Public Health doi: 10.3390/ijerph14101114 Authors: Guo-Fu Wang Hai-Min Lyu Jack Shen Lin-Hai Lu Gang Li Arul Arulrajah Jinan is a famous spring city in China. Construction of underground metro system may block groundwater seepage, inducing the depletion risk of springs. This paper presents an assessment of the risk due to metro line construction to groundwater in Jinan City using Analytic Hierarchy Process (AHP) and Geographic International System (GIS). Based on the characteristics of hydrogeology and engineering geology, the assessment model is established from the perspectives of surface index and underground index. The assessment results show that the high and very high risk levels of surface index exceed 98% in the north region; and high and very high risk levels of underground index exceed 56% in urban center and southern region. The assessment result also shows that about 14% of the urban area belongs to very high risk level; regions of high risk are 20% in urban area, 9% in Changqing County and 43% in Pingyin County. In the high risk region, metro lines R1 to R3, which are under construction, and metro lines L1 to L5, which are planned, have very high and high risk. Therefore, risk control measures are proposed to protect the groundwater seepage path to spring.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-10-13
    Description: On 10 May 2016, Guangdong Province, China, suffered a heavy rainstorm. This rainstorm flooded the whole city of Guangzhou. More than 100,000 people were affected by the flooding, in which eight people lost their lives. Subway stations, cars, and buses were submerged. In order to analyse the influential factors of this flooding, topographical characteristics were mapped using Digital Elevation Model (DEM) by the Geographical Information System (GIS) and meteorological conditions were statistically summarised at both the whole city level and the district level. To analyse the relationship between flood risk and urbanization, GIS was also adopted to map the effect of the subway system using the Multiple Buffer operator over the flooding distribution area. Based on the analyses, one of the significant influential factors of flooding was identified as the urbanization degree, e.g., construction of a subway system, which forms along flood-prone areas. The total economic loss due to flooding in city centers with high urbanization has become very serious. Based on the analyses, the traditional standard of severity of flooding hazards (rainfall intensity grade) was modified. Rainfall intensity for severity flooding was decreased from 50 mm to 30 mm in urbanized city centers. In order to protect cities from flooding, a “Sponge City” planning approach is recommended to increase the temporary water storage capacity during heavy rainstorms. In addition, for future city management, the combined use of GIS and Building Information Modelling (BIM) is recommended to evaluate flooding hazards.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-08-01
    Description: The circulation pump in an organic Rankine cycle (ORC) increases the pressure of the liquid working fluid from low condensing pressure to high evaporating pressure, and the expander utilizes the pressure difference to generate work. A portion of the expander output power is used to offset the consumed pumping work, and the rest of the expander power is exactly the net work produced by the ORC system. Because of the relatively great theoretical pumping work and very low efficiency of the circulation pump reported in previous papers, the characteristics of the expander power used for offsetting the pumping work need serious consideration. In particular, the present work examines those characteristics. It is found that the characteristics of the expander power used for offsetting the pumping work are satisfactory only under the condition that the working fluid absorbs sufficient heat in the evaporator and its specific volume at the evaporator outlet is larger than or equal to a threshold value.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-01-27
    Description: Materials, Vol. 11, Pages 191: Green Synthesis of Fluorescent Palladium Nanoclusters Materials doi: 10.3390/ma11020191 Authors: Yan Peng Pei Wang Liang Luo Lang Liu Fu Wang Metal nanoclusters, with dimensions between atomic and nanoparticles, have attracted a great deal of attention due to their significantly unusual properties. Water-soluble palladium nanoclusters (Pd NCs) with blue-green fluorescence were synthesized by a water bath heating method, with methionine as a stabilizer and ascorbic acid as a reducing agent. We investigated the optimal synthesis conditions, stability, and pH response of the obtained products in detail. The synthesized materials were characterized by ultraviolet-absorption spectroscopy, fluorescence spectroscopy, high-resolution transmission electron microscopy, and atomic force microscopy. These experimental results showed that the Pd NCs had a small size of ~1.91 nm, with a uniform size distribution. Additionally, the Pd NCs emitted blue-green fluorescence under ultraviolet light with a quantum yield of 5.47%. Notably, both stabilizers and reducing agents used in this synthesis method are nutrients for humans, non-toxic, and harmless. This method could be viewed as a biologically friendly and green way of preparing fluorescent metal nanoclusters. The as-prepared fluorescent Pd NCs also possessed excellent fluorescence detection ability and were very sensitive to low concentrations of hemoglobin, with a linear response in the range of 0.25–3.5 μM and a detection limit of 50 nM.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-17
    Description: Freckle defects usually appear on the surface of castings and industrial ingots during the directional solidification process and most of them are located near the interface between the shell mold and superalloys. Ceramic cores create more interfaces in the directionally solidified (DS) and single crystal (SX) hollow turbine blades. In order to investigate the location of freckle occurrence in superalloys, superalloy CM247 LC was directionally solidified in an industrial-sized Bridgman furnace. Instead of ceramic cores, Alumina tubes were used inside of the casting specimens. It was found that freckles occur not only on the casting external surfaces, but also appear near the internal interfaces between the ceramic core and superalloys. Meanwhile, the size, initial position, and area of freckle were investigated in various diameters of the specimens. The initial position of the freckle chain reduces when the diameter of the rods increase. Freckle area follows a linear relationship in various diameters and the average freckle fraction is 1.1% of cross sectional area of casting specimens. The flow of liquid metal near the interfaces was stronger than that in the interdendritic region in the mushy zone, and explained why freckle tends to occur on the outer or inner surfaces of castings. This new phenomenon suggests that freckles are more likely to occur on the outer or inner surfaces of the hollow turbine blades.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-24
    Description: Sensors, Vol. 18, Pages 658: Methionine-Capped Gold Nanoclusters as a Fluorescence-Enhanced Probe for Cadmium(II) Sensing Sensors doi: 10.3390/s18020658 Authors: Yan Peng Maomao Wang Xiaoxia Wu Fu Wang Lang Liu Gold nanoclusters (Au NCs) have been considered as novel heavy metal ions sensors due to their ultrafine size, photo-stability and excellent fluorescent properties. In this study, a green and facile method was developed for the preparation of fluorescent water-soluble gold nanoclusters with methionine as a stabilizer. The nanoclusters emit orange fluorescence with excitation/emission peaks at 420/565 nm and a quantum yield of about 1.46%. The fluorescence of the Au NCs is selectively and sensitively enhanced by addition of Cd(II) ions attributed to the Cd(II) ion-induced aggregation of nanoclusters. This finding was further used to design a fluorometric method for the determination of Cd(II) ions, which had a linear response in the concentration range from 50 nM to 35 μM and a detection limit of 12.25 nM. The practicality of the nanoprobe was validated in various environmental water samples and milk powder samples, with a fairly satisfactory recovery percent.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...