ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-11-04
    Description: Materials, Vol. 10, Pages 1267: Fabrication of a Nano-ZnO/Polyethylene/Wood-Fiber Composite with Enhanced Microwave Absorption and Photocatalytic Activity via a Facile Hot-Press Method Materials doi: 10.3390/ma10111267 Authors: Baokang Dang Yipeng Chen Xiaoping Shen Bo Chen Qingfeng Sun Chunde Jin A polyethylene/wood-fiber composite loaded with nano-ZnO was prepared by a facile hot-press method and was used for the photocatalytic degradation of organic compounds as well as for microwave absorption. ZnO nanoparticles with an average size of 29 nm and polyethylene (PE) powders were dispersed on the wood fibers’ surface through a viscous cationic polyacrylamide (CPAM) solution. The reflection loss (RL) value of the resulting composite was −21 dB, with a thickness of 3.5 mm in the frequency of 17.17 GHz. The PE/ZnO/wood-fiber (PZW) composite exhibited superior photocatalytic activity (84% methyl orange degradation within 300 min) under UV light irradiation. ZnO nanoparticels (NPs) increased the storage modulus of the PZW composite, and the damping factor was transferred to the higher temperature region. The PZW composite exhibited the maximum flexural strength of 58 MPa and a modulus of elasticity (MOE) of 9625 MPa. Meanwhile, it also displayed dimensional stability (thickness swelling value of 9%).
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-18
    Description: Energies, Vol. 11, Pages 223: Gas Transport Model in Organic Shale Nanopores Considering Langmuir Slip Conditions and Diffusion: Pore Confinement, Real Gas, and Geomechanical Effects Energies doi: 10.3390/en11010223 Authors: Liehui Zhang Baochao Shan Yulong Zhao Jia Du Jun Chen Xiaoping Tao Nanopores are extremely developed and randomly distributed in shale gas reservoirs. Due to the rarefied conditions in shale strata, multiple gas transport mechanisms coexist and need further understanding. The commonly used slip models are mostly based on Maxwell slip boundary condition, which assumes elastic collisions between gas molecules and solid surfaces. However, gas molecules do not rebound from solid surfaces elastically, but rather are adsorbed on them and then re-emitted after some time lag. A Langmuir slip permeability model was established by introducing Langmuir slip BC. Knudsen diffusion of bulk phase gas and surface diffusion of adsorbed gas were also coupled into our nanopore transport model. Considering the effects of real gas, stress dependence, thermodynamic phase changes due to pore confinement, surface roughness, gas molecular volume, and pore enlargement due to gas desorption during depressurization, a unified gas transport model in organic shale nanopores was established, which was then upscaled by coupling effective porosity and tortuosity to describe practical SGR properties. The bulk phase transport model, single capillary model, and upscaled porous media model were validated by data from experimental data, lattice Boltzmann method or model comparisons. Based on the new gas transport model, the equivalent permeability of different flow mechanisms as well as the flux proportion of each mechanism to total flow rate was investigated in different pore radius and pressure conditions. The study in this paper revealed special gas transport characteristics in shale nonopores and provided a robust foundation for accurate simulation of shale gas production.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-02-17
    Description: Urban growth is a process that imposes profound physical and socioeconomic restructuring on cities. Urban land expansion as an immediate physical manifestation of urban growth has been extensively studied using a variety of remote sensing methods. However, little research addresses the interactions between urban land expansion and corresponding activity changes, especially at local scales. We propose an innovative analytical framework that integrates Landsat and nighttime light data to capture the parcel-level relationships between urban land expansion and activity changes. The urban land data are acquired based on the classification of Landsat images, whereas the activity changes are approximated by the nighttime light data. Using the Local Indicator of Spatial Association (LISA) (local Moran’s I) approach, four types of local relationships between land expansion and activity changes are defined at the parcel level. The proposed analytical framework is applied in Guangzhou, China, as a case study. The results reveal the mismatched growth between urban land and activity intensity at the parcel level, where the increase in urban land area outpaces the increase of activity intensity. Such results are expected to provide a more comprehensive understanding of urban growth, and can be used to assist urban planning and related decision-making.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...