ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (2)
  • MDPI Publishing  (2)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (2)
  • 1
    Publication Date: 2017-09-16
    Description: Materials, Vol. 10, Pages 1091: Effects of Pulse Parameters on Weld Microstructure and Mechanical Properties of Extra Pulse Current Aided Laser Welded 2219 Aluminum Alloy Joints Materials doi: 10.3390/ma10091091 Authors: Xinge Zhang Liqun Li Yanbin Chen Zhaojun Yang Yanli Chen Xinjian Guo In order to expand the application range of laser welding and improve weld quality, an extra pulse current was used to aid laser-welded 2219 aluminum alloy, and the effects of pulse current parameters on the weld microstructure and mechanical properties were investigated. The effect mechanisms of the pulse current interactions with the weld pool were evaluated. The results indicated that the coarse dendritic structure in the weld zone changed to a fine equiaxed structure using an extra pulse current, and the pulse parameters, including medium peak current, relatively high pulse frequency, and low pulse duty ratio benefited to improving the weld structure. The effect mechanisms of the pulse current were mainly ascribed to the magnetic pinch effect, thermal effect, and electromigration effect caused by the pulse current. The effect of the pulse parameters on the mechanical properties of welded joints were consistent with that of the weld microstructure. The tensile strength and elongation of the optimal pulse current-aided laser-welded joint increased by 16.4% and 105%, respectively, compared with autogenous laser welding.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-01-21
    Description: Based on the adsorption performance of composite microspheres with activated carbon (AC) and sodium alginate (SA), as well as the magnetic property of Fe3O4, we designed and explored an efficient strategy to prepare a unique, multifunctional Fe3O4/AC/SA composite absorbent (MSA-AC) that extracted dye from aqueous solution. The composite exhibited the following advantages: rapid and simple to prepare, environmentally friendly process, low-cost, recyclability, and multi-functionality. The physicochemical properties of the prepared magnetic microspheres were measured, and methylene blue (MB) was selected to investigate the performance of the magnetic absorbent. The results showed a maximum adsorption capacity of 222.3 mg/g for MB. Adsorption studies revealed that the data of adsorption isotherms and kinetics fit the pseudo-second-order kinetic model and Langmuir isotherm model.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...