ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (3)
  • MDPI Publishing  (3)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (3)
  • 1
    Publication Date: 2015-12-02
    Description: Despite the knowledge gained in recent years regarding the use of acoustic emissions (AEs) in ecologically friendly, natural fiber-reinforced composites (including certain composites with bio-sourced matrices), there is still a knowledge gap in the understanding of the difference in damage behavior between green and biocomposites. Thus, this article investigates the behavior of two comparable green and biocomposites with tests that better reflect real-life applications, i.e., load-unloading and creep testing, to determine the evolution of the damage process. Comparing the mechanical results with the AE, it can be concluded that the addition of a coupling agent (CA) markedly reduced the ratio of AE damage to mechanical damage. CA had an extremely beneficial effect on green composites because the Kaiser effect was dominant during cyclic testing. During the creep tests, the use of a CA also avoided the transition to new damaging phases in both composites. The long-term applications of PE green material must be chosen carefully because bio and green composites with similar properties exhibited different damage processes in tests such as cycling and creep that could not be previously understood using only monotonic testing.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-08-22
    Description: Materials, Vol. 11, Pages 1491: A New Prediction Method for the Ultimate Tensile Strength of Steel Alloys with Small Punch Test Materials doi: 10.3390/ma11091491 Authors: Jose Calaf Chica Pedro Miguel Bravo Díez Mónica Preciado Calzada The load–deflection curve acquired from the Small Punch Test (SPT) is used to obtain the mechanical properties of materials using different correlation methods. The scattering level of these regressions tends to be high when a wide set of materials is analyzed. In this study, a correlation method based on a specific slope of the SPT curve was proposed to reduce scattering. Assuming the Ramberg–Osgood hardening law, the dependence of the SPT curve slope on the yield strength and the hardening coefficient is demonstrated by numerical simulations (FEM). Considering that the ultimate tensile strength could be obtained from the hardening coefficient, a response surface of the ultimate tensile strength with the yield strength and SPT curve slope, along with its equation, is presented for steel alloys. A summary of steel mechanical properties, based on the Boiler and Pressure Vessel Code (BPVC) and limited to yield strengths lower than 1300 MPa, is shown to select a set of experimental tests (tensile tests and SPTs) for which the range is completely covered. This experimental analysis validates the previous FEM analyses and the validity of the proposed correlation method, which shows more accurate correlations compared to the current methods.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-05-25
    Description: A bioactive layer, free of nickel, has been performed for its greater acceptability and reliability in clinical applications for NiTi shape memory alloys. In the first step, a safe barrier against Ni release has been produced on the surface by means of a thicker rutile/anastase protective layer free of nickel. In the second step, a sodium alkaline titanate hydrogel, which has the ability to induce apatite formation, has been performed from oxidized surface. An improvement of host tissue–implant integration has been achieved in terms of Ni ions release and the bioactivity of the treated NiTi alloys has been corroborated with both in vitro and in vivo studies. The transformation temperatures (As, Af, Ms, and Mf), as well as the critical stresses (σβ⇔M), have been slightly changed due to this surface modification. Consequently, this fact must be taken into account in order to design new surface modification on NiTi implants.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...