ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI Publishing  (1)
  • Molecular Diversity Preservation International  (1)
  • 1
    Publication Date: 2018-08-10
    Description: Atmosphere, Vol. 9, Pages 311: Post-Monsoon Season Precipitation Reduction over South Asia: Impacts of Anthropogenic Aerosols and Irrigation Atmosphere doi: 10.3390/atmos9080311 Authors: Wei-Ting Chen Kung-Tzu Huang Min-Hui Lo L. H. LinHo A significant declining trend of post-monsoon season precipitation in South Asia is observed between 2000–2014. Two major anthropogenic climate change drivers, aerosols and irrigation, have been steadily increasing during this period. The impacts of their regional and seasonal forcings on the post-monsoon precipitation reduction is investigated in this study through using idealized global climate simulations. The increased post-monsoon aerosol loadings lead to surface cooling downwind of the source areas by reduced surface shortwave flux. The addition of post-monsoon irrigation induces a stronger temperature decrease mainly around the irrigation hotspots by enhanced evaporation. Precipitation over West and North India is reduced post-monsoon by either aerosol or irrigation, which is mainly contributed by the anomalous subsidence. With concurrent forcings, the surface cooling and precipitation decrease are stronger and more extended spatially than the response to the separate forcing, with nonlinear amplification in surface cooling, but nonlinear damping in precipitation reduction. The anomalous vertical motion accelerates the transition of the regional meridional circulation, and hence the earlier withdrawal of the summer monsoon, which is consistent with the observed signals. The current results highlight the importance of including anthropogenic aerosol and irrigation effects in present and future climate simulations over South Asia.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-06-23
    Description: Green infrastructure (GI) is a decentralized stormwater management strategy that can simultaneously enhance the resilience of the urban landscape to weather-related stressors. The effectiveness of individual GI facilities is determined by the physical characteristics of the tributary area and inlet, including factors such as slope and geometry, apron configuration, roughness, and clogging, all of which have been inadequately studied. In this paper, we construct, calibrate, and validate a computational fluid dynamics (CFD) model using field survey data collected at a Bronx, NY GI facility. The validated CFD model is used to evaluate how inlet clogging and flow rate affect GI inlet performance. Seven flow rates ranging from 0.00044 to 0.00755 CMS were simulated. As the flow rate increased, the inlet efficiency dropped from 100% to 60% at one location (the SW inlet) and from 100% to 25% at another location (the NW inlet). At a fixed flow rate, the inlet efficiency dropped from 100% efficient (with no clogging) to 0% (with the inlet fully clogged). The stage-discharge relationship for the inlet based on the simulated field conditions deviated from that assumed based on normative flow and was revised. We suggest that GI facilities installed on mild- slope, or rough streets be fitted with non-clogging inlets to maintain free outfall conditions.
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...