ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: This study experimentally investigates the natural convection heat transfer performance of a rectangular thermosyphon with an aspect ratio of 3.5. The experimental model is divided into a loop body, a heating section, a cooling section, and two adiabatic sections. The heating section and the cooling section are located in the vertical legs of the rectangular loop. The length of the vertical heating section and the length of the upper and lower horizontal insulation sections are 700 mm and 200 mm, respectively, and the inner diameter of the loop is 11 mm. The relevant parameters and their ranges are as follows: the input thermal power is 30–60 W (with a heat flux in the range of 60–3800 W/m2); the temperature in the cooling section is 30, 40, or 50 °C; and the potential difference between the hot and cold sections is 5, 11, or 18 for the cooling section lengths of 60, 45, and 30 cm, respectively. The results indicate that the value of the dimensionless heat transfer coefficient, the Nusselt number, is generally between 5 and 10. The heating power is the main factor affecting the natural convection intensity of the thermosyphon.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...