ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Porosity is an important characteristic of porous material, which affects mechanical and material properties. In order to solve the problem that the large distribution range of pore size of porous materials leads to the large detection errors of porosity, the non-linear ultrasonic testing technique is applied. A graphite composite was used as the experimental object in the study. As the accuracy of porosity is directly related with feature extraction, the dynamic wavelet fingerprint (DWFP) technology was utilized to extract the feature parameter of the ultrasonic signals. The effects of the wavelet function, scale factor, and white slice ratio on the extraction of the nonlinear feature are discussed. The SEM photos were conducted using gray value to identify the aperture. The relationship between pore diameter and detection accuracy was studied. Its results show that the DWFP technology could identify the second harmonic component well, and the extracted nonlinear feature could be used for the quantitative trait of porosity. The larger the proportion of the small diameter holes and the smaller the aperture distribution range was, the smaller the error was. This preliminary research aimed to improve the nondestructive testing accuracy of porosity and it is beneficial to the application of porous material in the manufacturing field.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: We demonstrate a single-photon compressed imaging system based on single photon counting technology and compressed sensing theory. In order to cut down the measurement times and shorten the imaging time, a fast and efficient adaptive sampling method, suited for single-photon compressed imaging, is proposed. First, the pre-measured rough images are transformed into sparse bases as a priori information. Then a smart threshold matrix is designed by using large sparse coefficients of the rough image in sparse bases. The adaptive measurement matrix is obtained by modifying the original Gaussian random matrix with the specially designed threshold matrix. Building the adaptive measurement matrix requires only one level of sparse representation, which means that adaptive imaging can be achieved quickly with very little computation. The experimental results show that the reconstruction effect of the image measured using the adaptive measurement matrix is obviously superior than that of the Gaussian random matrix under different measurement times and different reconstruction algorithms.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...