ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: The demand for eco-friendly renewable natural fibers has grown in recent years. In this study, a series of polypropylene-based composites reinforced with single bamboo fibers (SBFs), prepared by non-woven paving and a hot-pressing process, were investigated. The influence of the content of SBF on impact strength, flexural strength, and water resistance was analyzed. The properties of the composites were greatly affected by the SBF content. Impact strength increased as SBF content increased. The modulus of rupture and modulus of elasticity show an optimum value, with SBF contents of 40% and 50%, respectively. The surface morphology of the fractured surfaces of the composites was characterized by scanning electron microscopy. The composites showed poor interfacial compatibility. The water resistance indicates that the composites with higher SBF contents have higher values of water absorption and thickness swelling, due to the hydrophilicity of the bamboo fibers. The thermal properties of the composites were characterized by thermal gravimetric analysis and by differential scanning calorimetry. The thermal stability of the composites was gradually reduced, due to the poor thermal stability of SBFs. In the composites, the maximum decomposition temperature corresponding to SBF shows an increasing trend. However, the maximum decomposition temperature of polypropylene was not influenced by SBF content. The melting point of the polypropylene in the composites was lower relative to pure polypropylene, although it was not affected by increasing SBF content.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019
    Description: As one of the most renewable and sustainable resources on Earth, bamboo with its high flexibility has been used in the fabrication of a wide variety of composite structures due to its properties. A bamboo-based winding composite (BWC) is an innovative bamboo product which has revolutionized pipe structures and their applications throughout China as well as improving their impact on the environment. However, as a natural functionally graded composite, the flexibility mechanism of bamboo has not yet been fully understood. Here, the bending stiffness method based on the cantilever beam principle was used to investigate the gradient and directional bending flexibility of bamboo (Phyllostachys edulis) slivers under different loading Types during elastic stages. Results showed that the graded distribution and gradient variation of cell size of the fibers embedded in the parenchyma cells along the thickness of the bamboo culm was mainly responsible for the exhibited gradient bending flexibility of bamboo slivers, whereas the shape and size difference of the vascular bundles from inner to outer layers played a critical role in directional bending flexibility. A validated rule of mixture was used to fit the bending stiffness under different loading Types as a function of fiber volume fraction. This work provides insights to the bionic preparation and optimization of high-performance BWC pipes.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019
    Description: As a significant subset of the family of discrete optimization problems, the 0-1 knapsack problem (0-1 KP) has received considerable attention among the relevant researchers. The monarch butterfly optimization (MBO) is a recent metaheuristic algorithm inspired by the migration behavior of monarch butterflies. The original MBO is proposed to solve continuous optimization problems. This paper presents a novel monarch butterfly optimization with a global position updating operator (GMBO), which can address 0-1 KP known as an NP-complete problem. The global position updating operator is incorporated to help all the monarch butterflies rapidly move towards the global best position. Moreover, a dichotomy encoding scheme is adopted to represent monarch butterflies for solving 0-1 KP. In addition, a specific two-stage repair operator is used to repair the infeasible solutions and further optimize the feasible solutions. Finally, Orthogonal Design (OD) is employed in order to find the most suitable parameters. Two sets of low-dimensional 0-1 KP instances and three kinds of 15 high-dimensional 0-1 KP instances are used to verify the ability of the proposed GMBO. An extensive comparative study of GMBO with five classical and two state-of-the-art algorithms is carried out. The experimental results clearly indicate that GMBO can achieve better solutions on almost all the 0-1 KP instances and significantly outperforms the rest.
    Electronic ISSN: 2227-7390
    Topics: Mathematics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019
    Description: Lean construction has been viewed as an effective management approach for reducing the occurrence of no-value or destructive activities, such as wasting resources and safety-related accidents. However, few studies have systematically addressed how and to what extent lean construction practices influence construction safety. To bridge this gap, a conceptual model is developed and validated using a system dynamics approach. The construction system in this model comprises four sub-systems (i.e., environment system, equipment system, management system, and employee system). Data were collected from 448 projects in China. Simulations were conducted to determine the correlations between five types of lean tools and the four construction sub-systems. The results show that: (a) 5S management has significant positive impacts on the control of key locations and facilities at construction sites, and contributes to the mitigation of environmental impacts; (b) visual management can significantly improve safety compliance and safety management; (c) just-in-time management has significantly positive influences on the safety facilities layout and formulation of the safety plan; and (d) the Last Planner® System and conference management are effective in improving safety training and the implementation of the safety plan. These findings provide new insights into the use of lean construction for improving construction safety through the implementation of a targeted lean approach.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: The objective of this study was to investigate the hygroscopic characteristics of three typical bamboo engineering composites (Bamboo scrimber (BS), bamboo bundle/wood laminated veneer lumber (BLVL), and bamboo laminated timber (BLT)) as well as predict their performance changes and service life in hot humid environments. The composites were subjected to three treatment conditions (23 °C, 63 °C, and 100 °C) for this experiment. The hygroscopic thickness swelling model and Fick’s second law were used to quantify the characterization and prediction of the water absorption, thickness swelling rate, and water absorption rate of BS, BLVL, and BLT. The results indicated that the order of the hygroscopic thickness swelling coefficient KSR and the diffusion coefficient D was BLT 〉 BLVL 〉 BS (at 23 °C and 63 °C). The optimal dimensional stability was displayed by BS, followed by BLVL and BLT. In addition to the hygroscopic properties, elastic modulus degradation was investigated. It was observed that the elastic modulus (MOR) degradation had a linear relationship with the aging temperature. After 152 h of the hydrothermal aging test (63 °C), the MOE of BS, BLVL, and BLT degraded by 44.33%, 53.89%, and 25.83%, respectively.
    Electronic ISSN: 1996-1944
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: The lack of an effective and practical quality control method for industrialized bamboo bundle veneers is the key restriction in the application of bamboo bundle composite materials in the field of construction. In this work, the density uniformity and mechanical properties of bamboo bundle veneers were systematically evaluated by the combination of light transmittance and mechanical stiffness. It was found that the number of broomings, dippings, and high-temperature heat treatments had different effects on the bamboo bundle veneers. On this basis, the uniformity of the density and mechanical properties of the bamboo scrimber (BS) that underwent hybrid paving, and the bamboo bundle laminated veneer lumber (BLVL), were analyzed. The results showed that the performance stability of bamboo bundle composites could be greatly improved by bamboo bundle veneer laminated paving. A large-scale quality evaluation system for bamboo bundle veneers was established in this work, and it provides conditions for the manufacture of bamboo bundle composites with stable and controllable performance.
    Electronic ISSN: 1999-4907
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: There are a huge number, and abundant types, of microalgae in the ocean; and most of them have various values in many fields, such as food, medicine, energy, feed, etc. Therefore, how to identify and separation of microalgae cells quickly and effectively is a prerequisite for the microalgae research and utilization. Herein, we propose a microfluidic system that comprised microalgae cell separation, treatment and viability characterization. Specifically, the microfluidic separation function is based on the principle of deterministic lateral displacement (DLD), which can separate various microalgae species rapidly by their different sizes. Moreover, a concentration gradient generator is designed in this system to automatically produce gradient concentrations of chemical reagents to optimize the chemical treatment of samples. Finally, a single photon counter was used to evaluate the viability of treated microalgae based on laser-induced fluorescence from the intracellular chlorophyll of microalgae. To the best of our knowledge, this is the first laboratory prototype system combining DLD separation, concentration gradient generator and chlorophyll fluorescence detection technology for fast analysis and treatment of microalgae using marine samples. This study may inspire other novel applications of micro-analytical devices for utilization of microalgae resources, marine ecological environment protection and ship ballast water management.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...